On-line Transmission Line Fault Classification using Long Short-Term Memory

Mengshi Li, Yaozhou Yu, T. Ji, Qinghua Wu
{"title":"On-line Transmission Line Fault Classification using Long Short-Term Memory","authors":"Mengshi Li, Yaozhou Yu, T. Ji, Qinghua Wu","doi":"10.1109/DEMPED.2019.8864831","DOIUrl":null,"url":null,"abstract":"In order to perform on-line transmission line fault diagnosis, this paper proposes a classification algorithm, which combines the long short-term memory (LSTM) network with a calibration training filter. The LSTM network adopted in this research is a multilayer recurrent neural network. As a deep learning algorithm, LSTM is extremely suitable to complex time-series classification problems, such as speech recognition and natural language processing. As the number of units in LSTM is much larger than conventional artificial neural networks (ANNs), the training progress is time consuming, and not able to be performed by on-line diagnosis devices. However, the parameters of the transmission line are always varying with time, which requires frequently calibration training on the network. In order to accelerate the calibration training of LSTM, a filter enhanced calibration is proposed. The filter selects samples having the same pattern as the signal under diagnosis, and further reduces the training complexity. The experimental study compares the proposed filter calibrated LSTM (FC-LSTM) against other neural networks and machine learning algorithms on a on-line test model. The numerical comparison not only shows FC-LSTM has a better classification accuracy and a very short time delay.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"629 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to perform on-line transmission line fault diagnosis, this paper proposes a classification algorithm, which combines the long short-term memory (LSTM) network with a calibration training filter. The LSTM network adopted in this research is a multilayer recurrent neural network. As a deep learning algorithm, LSTM is extremely suitable to complex time-series classification problems, such as speech recognition and natural language processing. As the number of units in LSTM is much larger than conventional artificial neural networks (ANNs), the training progress is time consuming, and not able to be performed by on-line diagnosis devices. However, the parameters of the transmission line are always varying with time, which requires frequently calibration training on the network. In order to accelerate the calibration training of LSTM, a filter enhanced calibration is proposed. The filter selects samples having the same pattern as the signal under diagnosis, and further reduces the training complexity. The experimental study compares the proposed filter calibrated LSTM (FC-LSTM) against other neural networks and machine learning algorithms on a on-line test model. The numerical comparison not only shows FC-LSTM has a better classification accuracy and a very short time delay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长短期记忆的在线输电线路故障分类
为了在线进行输电线路故障诊断,本文提出了一种将LSTM网络与校准训练滤波器相结合的分类算法。本研究采用的LSTM网络是一种多层递归神经网络。LSTM作为一种深度学习算法,非常适合于复杂的时间序列分类问题,如语音识别和自然语言处理。由于LSTM的单元数量比传统的人工神经网络(ann)要大得多,训练过程耗时长,并且不能通过在线诊断设备来完成。然而,传输线的参数总是随时间变化的,这就需要在网络上进行频繁的校准训练。为了加速LSTM的校准训练,提出了一种滤波增强的校准方法。滤波器选择与待诊断信号具有相同模式的样本,进一步降低了训练复杂度。实验研究在在线测试模型上将所提出的滤波器校准LSTM (FC-LSTM)与其他神经网络和机器学习算法进行了比较。数值比较表明,FC-LSTM不仅具有较好的分类精度和较短的时滞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1