Performance of noise removal methods with image quality parameter on μ-focused digital radiographic image

S. A. Halim, M. Z. P. Z. Nadila, A. Ibrahim, Y. Manurung
{"title":"Performance of noise removal methods with image quality parameter on μ-focused digital radiographic image","authors":"S. A. Halim, M. Z. P. Z. Nadila, A. Ibrahim, Y. Manurung","doi":"10.1109/BEIAC.2012.6226073","DOIUrl":null,"url":null,"abstract":"This study deals with noise removal methods on radiographic image which acquired using μ-focused digital radiography machine. The purposes of the study are to enhance the quality of radiographic image using noise removal methods and analyze the image quality using error measurement metrics. Median, gaussian, average and circular averaging filters are the noise removal methods applied on original radiographic image to produce processed image. Then, the processed image are measured in terms of Signal to Noise Ratio (SNR), Maximum Absolute Error (MAXABS), Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Besides that, the image quality is also measured using Modulation Transfer Function (MTF). Results show that gaussian filter gives the best enhancement of image quality based on error metrics and MTF. The development of image enhancement and quality measurement methods implementation are done using MATLAB R2009a.","PeriodicalId":404626,"journal":{"name":"2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC)","volume":"380 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEIAC.2012.6226073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study deals with noise removal methods on radiographic image which acquired using μ-focused digital radiography machine. The purposes of the study are to enhance the quality of radiographic image using noise removal methods and analyze the image quality using error measurement metrics. Median, gaussian, average and circular averaging filters are the noise removal methods applied on original radiographic image to produce processed image. Then, the processed image are measured in terms of Signal to Noise Ratio (SNR), Maximum Absolute Error (MAXABS), Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Besides that, the image quality is also measured using Modulation Transfer Function (MTF). Results show that gaussian filter gives the best enhancement of image quality based on error metrics and MTF. The development of image enhancement and quality measurement methods implementation are done using MATLAB R2009a.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带图像质量参数的消噪方法在μ聚焦数字射线图像上的性能
研究了用μ聚焦数字x射线照相机采集的x射线图像的去噪方法。本研究的目的是利用消噪方法来提高射线图像的质量,并利用误差测量指标来分析图像质量。中值滤波、高斯滤波、平均滤波和圆平均滤波是对原始射线图像进行去噪处理的方法。然后,对处理后的图像进行信噪比(SNR)、最大绝对误差(MAXABS)、均方误差(MSE)、峰值信噪比(PSNR)和均方根误差(RMSE)的测量。此外,还利用调制传递函数(MTF)对图像质量进行了测量。结果表明,基于误差度量和MTF的高斯滤波对图像质量的增强效果最好。利用MATLAB R2009a完成了图像增强的开发和质量测量方法的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of noise removal methods with image quality parameter on μ-focused digital radiographic image Silk Pneumatic Artificial Muscle (SPAM) construction for bio-medical engineering application Evaluation of Random Node Shutdown in wireless sensor network for improving energy efficiency Halal compliance critical control point (HCCCP) analysis of processed food Residential satisfaction; Meaning and interpretation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1