Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels

T. Frontzek, T. Navin Lal, R. Eckmiller
{"title":"Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels","authors":"T. Frontzek, T. Navin Lal, R. Eckmiller","doi":"10.1109/IJCNN.2001.939585","DOIUrl":null,"url":null,"abstract":"Based on biological data we examine the ability of support vector machines (SVMs) with Gaussian, polynomial and tanh-kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the Australian crayfish, and we determine the optimal SVMs parameters with regard to the test error. Compared to conventional RBF networks and MLPs, SVMs with Gaussian kernels learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membrane potential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"242 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Based on biological data we examine the ability of support vector machines (SVMs) with Gaussian, polynomial and tanh-kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the Australian crayfish, and we determine the optimal SVMs parameters with regard to the test error. Compared to conventional RBF networks and MLPs, SVMs with Gaussian kernels learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membrane potential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不同核的支持向量机预测生物神经元的非线性动力学
基于生物数据,我们研究了高斯、多项式和tanh核支持向量机(svm)学习和预测单个生物神经元非线性动态的能力。我们证明了用于回归的支持向量机学习了澳大利亚小龙虾幽门扩张神经元的动态,并根据测试误差确定了最优支持向量机参数。与传统的RBF网络和mlp相比,具有高斯核的支持向量机学习速度更快,并且在训练和测试误差方面执行了更好的迭代一步超前预测。从生物学的角度来看,支持向量机在预测动力学的最重要部分方面尤其出色,其中膜电位是由叠加的突触输入驱动到振荡峰值的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1