Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks

M. O. Efe, O. Kaynak, Xinghuo Yu, Bogdan M. Wilamowski
{"title":"Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks","authors":"M. O. Efe, O. Kaynak, Xinghuo Yu, Bogdan M. Wilamowski","doi":"10.1109/IJCNN.2001.939066","DOIUrl":null,"url":null,"abstract":"A method for driving the dynamics of a nonlinear system to a sliding mode is discussed. The approach is based on a sliding mode control methodology, i.e., the system under control is driven towards a sliding mode by tuning the parameters of the controller. In this loop, the parameters of the controller are adjusted such that a zero learning error level is reached in one dimensional phase space defined on the output of the controller. A Gaussian radial basis function neural network is used as the controller.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"41 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A method for driving the dynamics of a nonlinear system to a sliding mode is discussed. The approach is based on a sliding mode control methodology, i.e., the system under control is driven towards a sliding mode by tuning the parameters of the controller. In this loop, the parameters of the controller are adjusted such that a zero learning error level is reached in one dimensional phase space defined on the output of the controller. A Gaussian radial basis function neural network is used as the controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯径向基函数的非线性系统滑模控制
讨论了一种将非线性系统动力学驱动为滑模的方法。该方法基于滑模控制方法,即通过调整控制器的参数将被控制的系统推向滑模。在这个循环中,控制器的参数被调整,使得在控制器输出上定义的一维相空间中达到零学习误差水平。采用高斯径向基函数神经网络作为控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1