A Study on Backpropagation in Artificial Neural Networks

C. Sekhar, P. Meghana
{"title":"A Study on Backpropagation in Artificial Neural Networks","authors":"C. Sekhar, P. Meghana","doi":"10.21742/AJNNIA.2020.4.1.03","DOIUrl":null,"url":null,"abstract":"Innovation assumes essential job nowadays in human life to limit the manual work. Execution and exactness with innovation will be high. The Backpropagation neural framework is multilayered, feedforward neural framework and is by a full edge the most extensively utilized. It is moreover seen as one of the least demanding and most wide systems used for managed planning of multilayered neural systems. Backpropagation works by approximating the non-direct association between the data and the yield by changing the weight regards inside. It can furthermore be summarized for the data that is rejected from the planning structures (perceptive limits).","PeriodicalId":335163,"journal":{"name":"Asia-Pacific Journal of Neural Networks and Its Applications","volume":"59 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Neural Networks and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21742/AJNNIA.2020.4.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Innovation assumes essential job nowadays in human life to limit the manual work. Execution and exactness with innovation will be high. The Backpropagation neural framework is multilayered, feedforward neural framework and is by a full edge the most extensively utilized. It is moreover seen as one of the least demanding and most wide systems used for managed planning of multilayered neural systems. Backpropagation works by approximating the non-direct association between the data and the yield by changing the weight regards inside. It can furthermore be summarized for the data that is rejected from the planning structures (perceptive limits).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络的反向传播研究
创新在当今人类生活中扮演着重要的角色,以限制体力劳动。执行力和准确性与创新将是很高的。反向传播神经框架是多层前馈神经框架,是目前应用最广泛的一种。此外,它被认为是用于多层神经系统管理规划的要求最低和最广泛的系统之一。反向传播的工作原理是通过改变内部的权重来近似数据和产量之间的非直接关联。它还可以进一步总结为从规划结构中拒绝的数据(感知限制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Backpropagation in Artificial Neural Networks Machine Learning Algorithms for Parkinson's Disease Detection Detecting Drug-Drug Interaction (DDI) over the Social Media using Convolution Neural Network Deep Learning Descriptive Study on the Influence of Intermediation Methods Using Robots on the Improvement of Upper Extremity in Stroke Patients Utilization of Deep Learning Models in Medical Industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1