A parallel query engine for interactive spatiotemporal analysis

Mihir Sathe, Craig A. Knoblock, Yao-Yi Chiang, Aaron Harris
{"title":"A parallel query engine for interactive spatiotemporal analysis","authors":"Mihir Sathe, Craig A. Knoblock, Yao-Yi Chiang, Aaron Harris","doi":"10.1145/2666310.2666437","DOIUrl":null,"url":null,"abstract":"Given the increasing popularity and availability of location tracking devices, large quantities of spatiotemporal data are available from many different sources. Quick interactive analysis of such data is important in order to understand the data, identify patterns, and eventually make a marketable product. Since the data do not necessarily follow the relational model and may require flexible processing possibly using advanced machine learning techniques, spatial databases or similar query tools do not make the best means for such analysis. Moreover, the high complexity of geometric operations makes the quick interactive analysis very difficult. In this paper, we present a highly flexible functional query engine that 1) works with multiple schema types, 2) provides fast response times by spatiotemporal indexing and parallelization, 3) helps understand the data using visualizations and 4) is highly extensible to easily add complex functionality. To demonstrate its usefulness, we use our tool to solve a real world problem of crime pattern analysis in Los Angeles County and compare the process with other well known tools.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the increasing popularity and availability of location tracking devices, large quantities of spatiotemporal data are available from many different sources. Quick interactive analysis of such data is important in order to understand the data, identify patterns, and eventually make a marketable product. Since the data do not necessarily follow the relational model and may require flexible processing possibly using advanced machine learning techniques, spatial databases or similar query tools do not make the best means for such analysis. Moreover, the high complexity of geometric operations makes the quick interactive analysis very difficult. In this paper, we present a highly flexible functional query engine that 1) works with multiple schema types, 2) provides fast response times by spatiotemporal indexing and parallelization, 3) helps understand the data using visualizations and 4) is highly extensible to easily add complex functionality. To demonstrate its usefulness, we use our tool to solve a real world problem of crime pattern analysis in Los Angeles County and compare the process with other well known tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向交互时空分析的并行查询引擎
鉴于位置跟踪设备的日益普及和可用性,可以从许多不同的来源获得大量的时空数据。为了理解数据、识别模式并最终做出适销对路的产品,对这些数据进行快速交互式分析非常重要。由于数据不一定遵循关系模型,并且可能需要使用先进的机器学习技术进行灵活的处理,因此空间数据库或类似的查询工具并不是这种分析的最佳手段。此外,几何运算的高复杂性使得快速交互分析变得非常困难。在本文中,我们提出了一个高度灵活的功能性查询引擎,它1)可用于多种模式类型,2)通过时空索引和并行化提供快速响应时间,3)使用可视化帮助理解数据,4)具有高度可扩展性,可以轻松添加复杂功能。为了证明它的有用性,我们使用我们的工具来解决洛杉矶县的一个真实世界的犯罪模式分析问题,并将该过程与其他知名工具进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1