Parameterized spatial query processing based on social probabilistic clustering

L. Tang, Haiquan Chen, Wei-Shinn Ku, Min-Te Sun
{"title":"Parameterized spatial query processing based on social probabilistic clustering","authors":"L. Tang, Haiquan Chen, Wei-Shinn Ku, Min-Te Sun","doi":"10.1145/2666310.2666428","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two parameterized frameworks, namely the Uniform Watchtower (UW) framework and the Hot zone-based Watchtower (HW) framework, for the evaluation of spatial queries on large road networks. The motivation of this research is twofold: (1) how to answer spatial queries efficiently on large road networks with massive POI data and (2) how to take advantage of social data in spatial query processing. In UW, the network traversal terminates once it acquires the Point of Interest (POI) distance information stored in watchtowers. In HW, by observing that users' movements often exhibit strong spatial patterns, we employ probabilistic clustering to model mobile user check-in data as a mixture of 2-dimensional Gaussian distributions to identify hot zones so that watchtowers can be deployed discriminatorily. Our analyses verify the superiority of HW over UW in terms of query response time.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose two parameterized frameworks, namely the Uniform Watchtower (UW) framework and the Hot zone-based Watchtower (HW) framework, for the evaluation of spatial queries on large road networks. The motivation of this research is twofold: (1) how to answer spatial queries efficiently on large road networks with massive POI data and (2) how to take advantage of social data in spatial query processing. In UW, the network traversal terminates once it acquires the Point of Interest (POI) distance information stored in watchtowers. In HW, by observing that users' movements often exhibit strong spatial patterns, we employ probabilistic clustering to model mobile user check-in data as a mixture of 2-dimensional Gaussian distributions to identify hot zones so that watchtowers can be deployed discriminatorily. Our analyses verify the superiority of HW over UW in terms of query response time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社会概率聚类的参数化空间查询处理
本文提出了统一瞭望塔(Uniform Watchtower, UW)框架和基于热点区的瞭望塔(Hot zone-based Watchtower, HW)框架两种参数化框架,用于大型路网空间查询的评价。本研究的动机有两个方面:(1)如何在具有大量POI数据的大型道路网络上有效地回答空间查询;(2)如何在空间查询处理中利用社会数据。在UW中,一旦获得存储在瞭望塔中的兴趣点(POI)距离信息,网络遍历就会终止。在HW中,通过观察用户的移动经常表现出强烈的空间模式,我们采用概率聚类将移动用户登记数据建模为二维高斯分布的混合物,以识别热点区域,以便可以有区别地部署瞭望塔。我们的分析证实了HW在查询响应时间方面优于UW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1