A LDA-Based Approach for Interactive Web Mining of Topic Evolutionary Patterns

Bin Zhou, Jiuming Huang, Kai-Yuan Cui
{"title":"A LDA-Based Approach for Interactive Web Mining of Topic Evolutionary Patterns","authors":"Bin Zhou, Jiuming Huang, Kai-Yuan Cui","doi":"10.1109/ITAPP.2010.5566219","DOIUrl":null,"url":null,"abstract":"Many real-world Web mining tasks need to discover topics interactively, which means the users are likely to interfere the topic discovery and selection processes by expressing their preferences. In this paper, a new algorithm based on Latent Dirichlet Allocation (LDA) is proposed for interactive topic evolution pattern detection. To eliminate those topics not interested, it allows the users to add supervised information by adjusting the posterior topic-word distributions, which may influence the inference process of the following iteration. A framework is designed to incorporate different kinds of supervised information. Experiments on English and Chinese corpus show that the extracted topics capture meaningful themes and the suppervised information can help to find better topics more efficiently.","PeriodicalId":116013,"journal":{"name":"2010 International Conference on Internet Technology and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Internet Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAPP.2010.5566219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-world Web mining tasks need to discover topics interactively, which means the users are likely to interfere the topic discovery and selection processes by expressing their preferences. In this paper, a new algorithm based on Latent Dirichlet Allocation (LDA) is proposed for interactive topic evolution pattern detection. To eliminate those topics not interested, it allows the users to add supervised information by adjusting the posterior topic-word distributions, which may influence the inference process of the following iteration. A framework is designed to incorporate different kinds of supervised information. Experiments on English and Chinese corpus show that the extracted topics capture meaningful themes and the suppervised information can help to find better topics more efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lda的交互式Web主题演化模式挖掘方法
许多现实世界的Web挖掘任务需要交互式地发现主题,这意味着用户可能会通过表达他们的偏好来干扰主题发现和选择过程。本文提出了一种基于潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的交互式主题进化模式检测算法。为了消除那些不感兴趣的主题,它允许用户通过调整后验主题词分布来添加监督信息,这可能会影响后续迭代的推理过程。一个框架被设计成包含不同类型的监督信息。在英汉语料库上进行的实验表明,提取的主题能够捕获有意义的主题,并且有监督的信息有助于更有效地找到更好的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Application of Multimedia Courses in Academic Library Freshmen Instruction A New Operation Model of E-Business Incentive Mechanism Design on Human Capital Pricing of Enterprise A LDA-Based Approach for Interactive Web Mining of Topic Evolutionary Patterns Design and Implementation of Remote Parallel Computing System Based on Multi-Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1