Identifying Quantifiably Verifiable Statements from Text

Pegah Jandaghi, J. Pujara
{"title":"Identifying Quantifiably Verifiable Statements from Text","authors":"Pegah Jandaghi, J. Pujara","doi":"10.18653/v1/2023.matching-1.2","DOIUrl":null,"url":null,"abstract":"Humans often describe complex quantitative data using trend-based patterns. Trend-based patterns can be interpreted as higher order functions and relations over numerical data such as extreme values, rates of change, or cyclical repetition. One application where trends abound are descriptions of numerical tabular data. Therefore, the alignment of numerical tables and textual description of trends enables easier interpretations of tables. Most existing approaches can align quantities in text with tabular data but are unable to detect and align trend-based patterns about data. In this paper, we introduce the initial steps for aligning trend-based patterns about the data, i.e. the detection of textual description of trends and the alignment of trends with a relevant table. We introduce the problem of identifying quantifiably verifiable statements (QVS) in the text and aligning them with tables and datasets. We define the structure of these statements and implement a structured based detection. In our experiments, we demonstrate our method can detect and align these statements from several domains and compare favorably with traditional sequence labeling methods.","PeriodicalId":107861,"journal":{"name":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","volume":"195 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.matching-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humans often describe complex quantitative data using trend-based patterns. Trend-based patterns can be interpreted as higher order functions and relations over numerical data such as extreme values, rates of change, or cyclical repetition. One application where trends abound are descriptions of numerical tabular data. Therefore, the alignment of numerical tables and textual description of trends enables easier interpretations of tables. Most existing approaches can align quantities in text with tabular data but are unable to detect and align trend-based patterns about data. In this paper, we introduce the initial steps for aligning trend-based patterns about the data, i.e. the detection of textual description of trends and the alignment of trends with a relevant table. We introduce the problem of identifying quantifiably verifiable statements (QVS) in the text and aligning them with tables and datasets. We define the structure of these statements and implement a structured based detection. In our experiments, we demonstrate our method can detect and align these statements from several domains and compare favorably with traditional sequence labeling methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从文本中识别可量化验证的陈述
人类经常使用基于趋势的模式来描述复杂的定量数据。基于趋势的模式可以解释为数值数据(如极值、变化率或循环重复)上的高阶函数和关系。有大量趋势的一个应用是数字表格数据的描述。因此,数字表格和趋势的文本描述的对齐可以更容易地解释表格。大多数现有方法可以将文本中的数量与表格数据对齐,但无法检测和对齐基于趋势的数据模式。在本文中,我们介绍了对齐基于趋势的数据模式的初始步骤,即检测趋势的文本描述和将趋势与相关表对齐。我们介绍了在文本中识别可量化验证语句(QVS)并将它们与表和数据集对齐的问题。我们定义了这些语句的结构,并实现了基于结构化的检测。在我们的实验中,我们证明了我们的方法可以从多个域检测和对齐这些语句,并且与传统的序列标记方法相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward Consistent and Informative Event-Event Temporal Relation Extraction Identifying Quantifiably Verifiable Statements from Text Corpus-Based Task-Specific Relation Discovery On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1