On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking

Elliot Schumacher, J. Mayfield, Mark Dredze
{"title":"On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking","authors":"Elliot Schumacher, J. Mayfield, Mark Dredze","doi":"10.18653/v1/2023.matching-1.6","DOIUrl":null,"url":null,"abstract":"Fifteen years of work on entity linking has established the importance of different information sources in making linking decisions: mention and entity name similarity, contextual relevance, and features of the knowledge base. Modern state-of-the-art systems build on these features, including through neural representations (Wu et al., 2020). In contrast to this trend, the autoregressive language model GENRE (De Cao et al., 2021) generates normalized entity names for mentions and beats many other entity linking systems, despite making no use of knowledge base (KB) information. How is this possible? We analyze the behavior of GENRE on several entity linking datasets and demonstrate that its performance stems from memorization of name patterns. In contrast, it fails in cases that might benefit from using the KB. We experiment with a modification to the model to enable it to utilize KB information, highlighting challenges to incorporating traditional entity linking information sources into autoregressive models.","PeriodicalId":107861,"journal":{"name":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.matching-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fifteen years of work on entity linking has established the importance of different information sources in making linking decisions: mention and entity name similarity, contextual relevance, and features of the knowledge base. Modern state-of-the-art systems build on these features, including through neural representations (Wu et al., 2020). In contrast to this trend, the autoregressive language model GENRE (De Cao et al., 2021) generates normalized entity names for mentions and beats many other entity linking systems, despite making no use of knowledge base (KB) information. How is this possible? We analyze the behavior of GENRE on several entity linking datasets and demonstrate that its performance stems from memorization of name patterns. In contrast, it fails in cases that might benefit from using the KB. We experiment with a modification to the model to enable it to utilize KB information, highlighting challenges to incorporating traditional entity linking information sources into autoregressive models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于自回归实体链接中名称匹配的惊人有效性
15年的实体链接工作已经确定了不同信息源在做出链接决策中的重要性:提及和实体名称的相似性、上下文相关性和知识库的特征。现代最先进的系统建立在这些特征之上,包括通过神经表示(Wu et al., 2020)。与此趋势相反,自回归语言模型GENRE (De Cao et al., 2021)为提及生成规范化的实体名称,并击败了许多其他实体链接系统,尽管不使用知识库(KB)信息。这怎么可能呢?我们分析了GENRE在几个实体链接数据集上的行为,并证明了它的性能源于名称模式的记忆。相反,在可能受益于使用KB的情况下,它会失败。我们尝试对模型进行修改,使其能够利用知识库信息,突出了将传统实体链接信息源纳入自回归模型的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward Consistent and Informative Event-Event Temporal Relation Extraction Identifying Quantifiably Verifiable Statements from Text Corpus-Based Task-Specific Relation Discovery On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1