Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays

Fraser K. Coutts, K. Thompson, Stephan Weiss, I. Proudler
{"title":"Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays","authors":"Fraser K. Coutts, K. Thompson, Stephan Weiss, I. Proudler","doi":"10.1109/SiPS.2017.8109976","DOIUrl":null,"url":null,"abstract":"A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm — named divide-and-conquer sequential matrix diagonalisation (DC-SMD) — for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"125 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm — named divide-and-conquer sequential matrix diagonalisation (DC-SMD) — for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型宽带传感器阵列分治顺序矩阵对角化性能分析
介绍了一些能够迭代计算多项式矩阵特征值分解(PEVD)的算法。PEVD是将普通EVD扩展到多项式矩阵,并将使用拟合运算对角化拟合矩阵。受最近对低复杂度分治PEVD算法的研究启发,本文分析了该算法的性能-命名为分治顺序矩阵对角化(DC-SMD) -用于涉及各种维度宽带传感器阵列的应用。我们证明,通过使用DC-SMD算法而不是传统的替代算法,可以显着降低PEVD的复杂性和执行时间。这种减少被证明对涉及大型阵列的宽带多通道问题特别有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays Design space exploration of dataflow-based Smith-Waterman FPGA implementations Hardware error correction using local syndromes A stochastic number representation for fully homomorphic cryptography Statistical analysis of Post-HEVC encoded videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1