Diagnosis of impedance fault in distribution system with distributed generations using radial basis function neural network

N. Rezaei, S. Javadian, N. Khalesi, M. Haghifam
{"title":"Diagnosis of impedance fault in distribution system with distributed generations using radial basis function neural network","authors":"N. Rezaei, S. Javadian, N. Khalesi, M. Haghifam","doi":"10.1109/SMFG.2011.6125762","DOIUrl":null,"url":null,"abstract":"In recent years, complexity of fault diagnosis in the advanced distribution networks, mainly due to the increased use of distributed generations and fault with impedance result in proposing of adaptive fault location technique using neural network. Radial basis function neural networks are used for fault diagnosis and fault location. The proposed approach reduces the complexity of the fault location in case of impedance fault. The predicted results prove the effectiveness of the proposed online automatic procedure for fast and accurate fault diagnosis of the system for a wide range of system conditions.","PeriodicalId":161289,"journal":{"name":"2011 IEEE International Conference on Smart Measurements of Future Grids (SMFG) Proceedings","volume":"123 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Smart Measurements of Future Grids (SMFG) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMFG.2011.6125762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, complexity of fault diagnosis in the advanced distribution networks, mainly due to the increased use of distributed generations and fault with impedance result in proposing of adaptive fault location technique using neural network. Radial basis function neural networks are used for fault diagnosis and fault location. The proposed approach reduces the complexity of the fault location in case of impedance fault. The predicted results prove the effectiveness of the proposed online automatic procedure for fast and accurate fault diagnosis of the system for a wide range of system conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数神经网络的分布式代配电系统阻抗故障诊断
近年来,高级配电网故障诊断的复杂性,主要是由于分布式代和阻抗故障的使用增加,因此提出了基于神经网络的自适应故障定位技术。采用径向基神经网络进行故障诊断和定位。该方法降低了阻抗故障定位的复杂性。预测结果证明了所提出的在线自动程序在广泛的系统条件下对系统进行快速、准确的故障诊断的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnosis of impedance fault in distribution system with distributed generations using radial basis function neural network Accuracy of a DFT phasor estimator at off-nominal frequency in either steady state or transient conditions Smart Grids for the masses: An Agent-Based system for remote measurement A case for IEEE Std. 1451 in smart microgrid environments Theory of evidence-based automated decision making in cyber-physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1