MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT

Yasheng Chen, Meher R. Juttukonda, Yueh Z. Lee, Yi Su, Felipe Espinoza, Weili Lin, D. Shen, David Lulash, H. An
{"title":"MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT","authors":"Yasheng Chen, Meher R. Juttukonda, Yueh Z. Lee, Yi Su, Felipe Espinoza, Weili Lin, D. Shen, David Lulash, H. An","doi":"10.1109/ISBI.2014.6868131","DOIUrl":null,"url":null,"abstract":"MR-based attenuation correction (AC) is a prerequisite to fully harnessing the power of the recently introduced hybrid PET/MRI scanner. Assigning attenuation coefficients based upon MR anatomical images alone remains challenging. In this study, we sought to develop a novel approach based upon hidden Markov random field segmentation (hMRFS) and sparse regression (SR) to estimate CT from T1w images for AC in PET reconstruction in the head. The performance of the proposed method was evaluated using patient-specific PET simulation. We compared the mean absolute (MARE) and full width tenth maximum (FWTM) of relative errors of the reconstructed PET images using attenuation maps from the proposed (μprop), averaged atlas (μatlas) and CT segmentation methods (a.k.a. silver standard) and found that our proposed approach produced significantly lower MARE and FWTM in the errors of the reconstructed PET images. Thus, even with T1w contrast alone, we are able to achieve the accuracy on a par with the previous reports using multispectral MRI data.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

MR-based attenuation correction (AC) is a prerequisite to fully harnessing the power of the recently introduced hybrid PET/MRI scanner. Assigning attenuation coefficients based upon MR anatomical images alone remains challenging. In this study, we sought to develop a novel approach based upon hidden Markov random field segmentation (hMRFS) and sparse regression (SR) to estimate CT from T1w images for AC in PET reconstruction in the head. The performance of the proposed method was evaluated using patient-specific PET simulation. We compared the mean absolute (MARE) and full width tenth maximum (FWTM) of relative errors of the reconstructed PET images using attenuation maps from the proposed (μprop), averaged atlas (μatlas) and CT segmentation methods (a.k.a. silver standard) and found that our proposed approach produced significantly lower MARE and FWTM in the errors of the reconstructed PET images. Thus, even with T1w contrast alone, we are able to achieve the accuracy on a par with the previous reports using multispectral MRI data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MRI的PET/MRI衰减校正,采用MRF分割和稀疏回归估计CT
基于核磁共振的衰减校正(AC)是充分利用最近推出的混合PET/MRI扫描仪的先决条件。仅根据MR解剖图像分配衰减系数仍然具有挑战性。在这项研究中,我们试图开发一种基于隐马尔可夫随机场分割(hMRFS)和稀疏回归(SR)的新方法,从T1w图像中估计头部PET重建中AC的CT。采用患者特异性PET模拟对所提出方法的性能进行了评估。利用本文提出的衰减图(μprop)、平均图谱(μatlas)和CT分割方法(又称银标准)的衰减图,对重建的PET图像的相对误差的平均绝对误差(MARE)和全宽度十分之一最大值(FWTM)进行了比较,发现本文提出的方法在重建的PET图像的误差中产生了明显较低的MARE和FWTM。因此,即使单独使用T1w对比度,我们也能够达到与先前使用多光谱MRI数据的报告相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1