DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks

Brian G. Booth, G. Hamarneh
{"title":"DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks","authors":"Brian G. Booth, G. Hamarneh","doi":"10.1109/ISBI.2014.6867974","DOIUrl":null,"url":null,"abstract":"We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"195 1-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DTI-DeformIt:为扩散张量图像分析任务生成真值验证数据
我们提出DTI-DeformIt:一个框架,从更少的数量,甚至一个,注释图像(s)生成真实的合成数据集。我们的方法扩展了Hamarneh等人[1]的DeformIt技术来处理扩散张量图像的变形和噪声条件。我们提出的框架的实现也作为免费下载提供。我们进一步证明,DTI-DeformIt生成的图像,根据特征向量距离,与其他真实图像没有区别,使其适合机器学习和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1