Johann Vargas-Calixto, Yvonne Wu, M. Kuzniewicz, Marie-Coralie Cornet, Heather Forquer, Lawrence Gerstley, E. Hamilton, P. Warrick, Robert E. Kearney
{"title":"The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure","authors":"Johann Vargas-Calixto, Yvonne Wu, M. Kuzniewicz, Marie-Coralie Cornet, Heather Forquer, Lawrence Gerstley, E. Hamilton, P. Warrick, Robert E. Kearney","doi":"10.22489/CinC.2022.268","DOIUrl":null,"url":null,"abstract":"The research objective of our group is to improve the intrapartum detection of cardiotocography tracings associated with an increased risk of developing fetal acidosis and subsequent hypoxic-ischemic encephalopathy (HIE). The detection methods that we aim to develop must be sensitive to abnormal tracings without causing excessive unnecessary interventions. Past studies showed that the dynamic response of fetal heart rate (FHR) to uterine pressure (UP) during the intrapartum could be modelled using linear systems. In this study, we examined the assumption of linearity by comparing the performance of linear dynamic and nonlinear dynamic models of the UP-FHR system. The linear systems were defined by second-order state-space models. The nonlinear systems were defined by Hammerstein models: a cascade of a static nonlinearity and a linear second-order state-space model. Our results showed that nonlinear dynamic models were better than linear systems in 81.8% of UP-FHR segments.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"17 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The research objective of our group is to improve the intrapartum detection of cardiotocography tracings associated with an increased risk of developing fetal acidosis and subsequent hypoxic-ischemic encephalopathy (HIE). The detection methods that we aim to develop must be sensitive to abnormal tracings without causing excessive unnecessary interventions. Past studies showed that the dynamic response of fetal heart rate (FHR) to uterine pressure (UP) during the intrapartum could be modelled using linear systems. In this study, we examined the assumption of linearity by comparing the performance of linear dynamic and nonlinear dynamic models of the UP-FHR system. The linear systems were defined by second-order state-space models. The nonlinear systems were defined by Hammerstein models: a cascade of a static nonlinearity and a linear second-order state-space model. Our results showed that nonlinear dynamic models were better than linear systems in 81.8% of UP-FHR segments.