Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals

Matthieu Scherpf, Hagen Malberg, Martin Schmidt
{"title":"Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals","authors":"Matthieu Scherpf, Hagen Malberg, Martin Schmidt","doi":"10.22489/CinC.2022.307","DOIUrl":null,"url":null,"abstract":"Imaging photoplethysmography $(iPPG)$ enables the extraction of physiological signals from standard $RGB$ video recordings. For the assessment of the human health condition, pulse pressure is of utmost importance and is usually determined from conventional blood pressure signals. Within this work we present the fully automated estimation of pulse pressure using $iPPG$ We computed the pulse strength from the $iPPG$ signals and performed a linear correlation analysis with the corresponding pulse pressure. We compared different algorithmic $iPPG$ approaches amongst one is an artificial neural network. We measured a maximum pearson correlation of 0.65 for the artificial neural network and 0.63 for the best conventional approach. Our results show 0.1 increase in correlation coefficient compared to previous work based on manual processing, demonstrating the feasibility of automated contactless pulse pressure estimation from $RGB$ videos.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging photoplethysmography $(iPPG)$ enables the extraction of physiological signals from standard $RGB$ video recordings. For the assessment of the human health condition, pulse pressure is of utmost importance and is usually determined from conventional blood pressure signals. Within this work we present the fully automated estimation of pulse pressure using $iPPG$ We computed the pulse strength from the $iPPG$ signals and performed a linear correlation analysis with the corresponding pulse pressure. We compared different algorithmic $iPPG$ approaches amongst one is an artificial neural network. We measured a maximum pearson correlation of 0.65 for the artificial neural network and 0.63 for the best conventional approach. Our results show 0.1 increase in correlation coefficient compared to previous work based on manual processing, demonstrating the feasibility of automated contactless pulse pressure estimation from $RGB$ videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于成像光容积脉搏波信号的改进脉压估计
成像光电体积脉搏描记术(iPPG)能够从标准的RGB视频记录中提取生理信号。对于人体健康状况的评估,脉压是最重要的,通常由常规血压信号确定。在这项工作中,我们使用$iPPG$自动估计脉冲压力。我们从$iPPG$信号中计算脉冲强度,并与相应的脉冲压力进行线性相关分析。我们比较了不同的算法,其中一种是人工神经网络。我们测量了人工神经网络的最大pearson相关性为0.65,最佳常规方法的最大pearson相关性为0.63。我们的研究结果显示,与之前基于人工处理的工作相比,相关系数增加了0.1,证明了从RGB视频中自动估计非接触式脉冲压力的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1