Simple one step spray process for CuInS2 / In2S3 heterojunctions on flexible substrates for photovoltaic applications

T. Thomas, K. R. Kumar, C. D. Kartha, K. Vijayakumar
{"title":"Simple one step spray process for CuInS2 / In2S3 heterojunctions on flexible substrates for photovoltaic applications","authors":"T. Thomas, K. R. Kumar, C. D. Kartha, K. Vijayakumar","doi":"10.1117/12.2187065","DOIUrl":null,"url":null,"abstract":"Flexible semiconducting devices such as solar cells and displays have been a recent attraction. Unlike heavy, brittle glass substrates, plastics and metallic foils have advantage of flexibility. They also have added advantages like good thermal stability and high melting point. In this paper we present a very simple method for the growth of Copper Indium Sulphide (CIS) films by depositing merely Indium Sulphide (InS) directly over the Cu foil using simple and economical chemical spray pyrolysis technique. The effects of volume of precursor solution on structural and morphological properties of the films were studied. Finally trials on heterojunctions with a structure of Cu foil/CIS/InS/Ag were also employed. Further improvement on heterojunction is expected by optimizing the morphological and structural properties of the film.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Flexible semiconducting devices such as solar cells and displays have been a recent attraction. Unlike heavy, brittle glass substrates, plastics and metallic foils have advantage of flexibility. They also have added advantages like good thermal stability and high melting point. In this paper we present a very simple method for the growth of Copper Indium Sulphide (CIS) films by depositing merely Indium Sulphide (InS) directly over the Cu foil using simple and economical chemical spray pyrolysis technique. The effects of volume of precursor solution on structural and morphological properties of the films were studied. Finally trials on heterojunctions with a structure of Cu foil/CIS/InS/Ag were also employed. Further improvement on heterojunction is expected by optimizing the morphological and structural properties of the film.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏应用柔性基板上CuInS2 / In2S3异质结的简单一步喷涂工艺
像太阳能电池和显示器这样的柔性半导体设备最近很有吸引力。与重而脆的玻璃基板不同,塑料和金属箔具有柔韧性的优点。它们还具有诸如良好的热稳定性和高熔点等附加优点。本文提出了一种非常简单的方法,即利用简单经济的化学喷雾热解技术在铜箔上直接沉积硫化铟(InS)来生长硫化铜铟(CIS)薄膜。研究了前驱体溶液体积对薄膜结构和形态性能的影响。最后对铜箔/CIS/InS/Ag结构异质结进行了试验。期望通过优化薄膜的形态和结构性能来进一步改善异质结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system reliability program at Sandia National Labs: From material-level to system-level analysis (Presentation Recording) A novel method for mapping open-circuit voltage in solar cells with nanoscale resolution (Presentation Recording) Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording) Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording) Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1