Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording)

Emre Yassitepe, O. Voznyy, E. Sargent, A. Nogueira
{"title":"Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording)","authors":"Emre Yassitepe, O. Voznyy, E. Sargent, A. Nogueira","doi":"10.1117/12.2188567","DOIUrl":null,"url":null,"abstract":"Colloidal quantum dot heterojunction thin film solar cells (CQD-TFSC) utilize facile thin film deposition methods and promise high photon conversion efficiencies (PCE) to cost ratio which is highly desired for commercialization. So far, surface passivated PbS CQD-TFSCs show the highest PCE results, reaching 9.2% with good stability. Among other potential candidates, CuInSe2 CQDs stand out as a non-toxic material with high potential for performance, judging on bulk Cu(Ga,In)(S,Se)2 TFSCs reaching 20% PCE, with high stability. CuInSe2 CQDs has advantage over bulk films, mainly the much less expensive manufacturing cost of uniform deposition on large areas. Ga is known to cause phase separation in the bulk CIGS system. In a CQD form, CuInSe2 band gap can be tuned between 1 to 1.6 eV by quantum confinement without need for Ga and this eliminates the phase separation issue. Within our best knowledge, there are no reports on surface trap passivated CuInSe2 CQD-TFSCs. However Cu(In,Ga)(S,Se)2 colloidal particles were cast in thin film form and fused to form bulk-like crystals by various annealing conditions for solar cell devices. In this work, we investigated well-passivated CuInSe2 CQDs on n-type TiO2 and ZnO layers to form depleted heterojunction structure. We prepared luminescent CuInSe2 CQDs by synthetic wet chemistry methods and passivated the surface with 3-mercaptopropionic acid or tetrabutylammonium iodide using solid-state ligand exchange. X-ray photoelectron spectroscopy was used to confirm the ligand boding and surface coverage of the quantum dots. We will present the effect of synthesis and thin film preparation conditions on the solar cell device performance","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2188567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal quantum dot heterojunction thin film solar cells (CQD-TFSC) utilize facile thin film deposition methods and promise high photon conversion efficiencies (PCE) to cost ratio which is highly desired for commercialization. So far, surface passivated PbS CQD-TFSCs show the highest PCE results, reaching 9.2% with good stability. Among other potential candidates, CuInSe2 CQDs stand out as a non-toxic material with high potential for performance, judging on bulk Cu(Ga,In)(S,Se)2 TFSCs reaching 20% PCE, with high stability. CuInSe2 CQDs has advantage over bulk films, mainly the much less expensive manufacturing cost of uniform deposition on large areas. Ga is known to cause phase separation in the bulk CIGS system. In a CQD form, CuInSe2 band gap can be tuned between 1 to 1.6 eV by quantum confinement without need for Ga and this eliminates the phase separation issue. Within our best knowledge, there are no reports on surface trap passivated CuInSe2 CQD-TFSCs. However Cu(In,Ga)(S,Se)2 colloidal particles were cast in thin film form and fused to form bulk-like crystals by various annealing conditions for solar cell devices. In this work, we investigated well-passivated CuInSe2 CQDs on n-type TiO2 and ZnO layers to form depleted heterojunction structure. We prepared luminescent CuInSe2 CQDs by synthetic wet chemistry methods and passivated the surface with 3-mercaptopropionic acid or tetrabutylammonium iodide using solid-state ligand exchange. X-ray photoelectron spectroscopy was used to confirm the ligand boding and surface coverage of the quantum dots. We will present the effect of synthesis and thin film preparation conditions on the solar cell device performance
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于量子点异质结太阳能电池的表面钝化胶体CuIn(S,Se)2量子点(演示记录)
胶体量子点异质结薄膜太阳能电池(CQD-TFSC)利用简单的薄膜沉积方法,具有很高的光子转换效率(PCE)和成本比,这是商业化所迫切需要的。目前为止,表面钝化PbS CQD-TFSCs的PCE结果最高,达到9.2%,稳定性良好。在其他潜在的候选者中,CuInSe2 CQDs作为一种具有高性能潜力的无毒材料脱颖而出,从Cu(Ga,In)(S,Se)2 TFSCs的体积达到20% PCE来看,具有很高的稳定性。与大块薄膜相比,CuInSe2 CQDs具有优势,主要是大面积均匀沉积的制造成本要低得多。众所周知,Ga在大块CIGS系统中会引起相分离。在CQD形式中,CuInSe2带隙可以通过量子约束在1到1.6 eV之间调谐,而不需要Ga,这消除了相分离问题。据我们所知,目前还没有关于表面阱钝化CuInSe2 CQD-TFSCs的报道。然而,Cu(In,Ga)(S,Se)2胶体颗粒在不同的退火条件下以薄膜形式铸造并熔融形成块状晶体用于太阳能电池器件。在这项工作中,我们研究了钝化良好的CuInSe2 CQDs在n型TiO2和ZnO层上形成贫异质结结构。采用合成湿化学方法制备了发光CuInSe2 CQDs,并采用固体配体交换法用3-巯基丙酸或四丁基碘化铵钝化表面。用x射线光电子能谱法确定了量子点的配体结合和表面覆盖。我们将介绍合成和薄膜制备条件对太阳能电池器件性能的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system reliability program at Sandia National Labs: From material-level to system-level analysis (Presentation Recording) A novel method for mapping open-circuit voltage in solar cells with nanoscale resolution (Presentation Recording) Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording) Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording) Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1