Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model

Jun-Wu Deng, Haoliang Li, X. Cui, Siwei Chen
{"title":"Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model","authors":"Jun-Wu Deng, Haoliang Li, X. Cui, Siwei Chen","doi":"10.1109/ICSPCC55723.2022.9984546","DOIUrl":null,"url":null,"abstract":"Multi-temporal polarimetric synthetic aperture radar (PolSAR) image is an important tool to monitor crops growth and evaluate disaster damage. The multi-temporal PolSAR data has the high dimensional representation. Benefited from the tensor analysis, a three dimensional polarimetric scattering tensor is established. The polarimetric scattering tensor eigenvalue decomposition is proposed to derive the polarimetric features, which are polarimetric tensor entropy, polarimetric tensor alpha angle and polarimetric tensor anisotropy, respectively. Multi-temporal PolSAR image classification is applied to validate the effectiveness of the proposed features. To further improve the classification accuracy, the 1 × 1 convolutional kernel is introduced to learn the inter-temporal information. For the multi-temporal UAVSAR datasets, the proposed method achieves the excellent classification accuracy in the multi-temporal PolSAR image classification.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-temporal polarimetric synthetic aperture radar (PolSAR) image is an important tool to monitor crops growth and evaluate disaster damage. The multi-temporal PolSAR data has the high dimensional representation. Benefited from the tensor analysis, a three dimensional polarimetric scattering tensor is established. The polarimetric scattering tensor eigenvalue decomposition is proposed to derive the polarimetric features, which are polarimetric tensor entropy, polarimetric tensor alpha angle and polarimetric tensor anisotropy, respectively. Multi-temporal PolSAR image classification is applied to validate the effectiveness of the proposed features. To further improve the classification accuracy, the 1 × 1 convolutional kernel is introduced to learn the inter-temporal information. For the multi-temporal UAVSAR datasets, the proposed method achieves the excellent classification accuracy in the multi-temporal PolSAR image classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于偏振散射张量特征值分解和深度CNN模型的多时相偏振sar图像分类
多时相偏振合成孔径雷达(PolSAR)图像是农作物生长监测和灾害损失评估的重要工具。多时相PolSAR数据具有高维表示。通过张量分析,建立了三维偏振散射张量。提出了偏振散射张量特征值分解方法,导出了偏振张量熵、偏振张量α角和偏振张量各向异性的偏振特征。应用多时相PolSAR图像分类验证了所提特征的有效性。为了进一步提高分类精度,引入1 × 1卷积核学习时间间信息。对于多时相UAVSAR数据集,该方法在多时相PolSAR图像分类中取得了较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model Deep Residual Shrinkage Network With Time-Frequency Features For Bearing Fault Diagnosis Motion parameters estimation of an underwater multitonal source by using field oscillation at different frequencies in deep water Radar-Enhanced Image Fusion-based Object Detection for Autonomous Driving A Reduced-Order Multiple-Model Adaptive Identification Algorithm of Missile Guidance Law
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1