Radar-Enhanced Image Fusion-based Object Detection for Autonomous Driving

Yaqing Gu, Shiyu Meng, Kun Shi
{"title":"Radar-Enhanced Image Fusion-based Object Detection for Autonomous Driving","authors":"Yaqing Gu, Shiyu Meng, Kun Shi","doi":"10.1109/ICSPCC55723.2022.9984358","DOIUrl":null,"url":null,"abstract":"Accurate and robust object detection is imperative to the implementation of autonomous driving. In real-world scenarios, the effectiveness of image-based detectors is limited by low visibility or harsh circumstances. Owing to the immunity to environmental variability, millimeter-wave (mmWave) radar sensors are complementary to camera sensors, opening up the possibility of radar-camera fusion to improve object detection performance. In this paper, we construct a Radar-Enhanced image Fusion Network (REFNet) for 2D object detection in autonomous driving. Specifically, the radar data is projected onto the camera image plane to unify the data format of heterogeneous sensing modalities. To overcome the sparsity of radar point clouds, we devise an Uncertainty Radar Block (URB) to increase the density of radar points considering the azimuth uncertainty of radar measurements. Additionally, we design an adaptive network architecture which supports multi-level fusion and has the ability to determine the optimal fusion level. Moreover, we incorporate a robust attention module within the fusion network to exploit the synergy of radar and camera information. Evaluated with the canonical nuScenes dataset, our proposed method consistently and significantly outperforms the image-only version under all scenarios, especially in nightly and rainy conditions.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"60 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate and robust object detection is imperative to the implementation of autonomous driving. In real-world scenarios, the effectiveness of image-based detectors is limited by low visibility or harsh circumstances. Owing to the immunity to environmental variability, millimeter-wave (mmWave) radar sensors are complementary to camera sensors, opening up the possibility of radar-camera fusion to improve object detection performance. In this paper, we construct a Radar-Enhanced image Fusion Network (REFNet) for 2D object detection in autonomous driving. Specifically, the radar data is projected onto the camera image plane to unify the data format of heterogeneous sensing modalities. To overcome the sparsity of radar point clouds, we devise an Uncertainty Radar Block (URB) to increase the density of radar points considering the azimuth uncertainty of radar measurements. Additionally, we design an adaptive network architecture which supports multi-level fusion and has the ability to determine the optimal fusion level. Moreover, we incorporate a robust attention module within the fusion network to exploit the synergy of radar and camera information. Evaluated with the canonical nuScenes dataset, our proposed method consistently and significantly outperforms the image-only version under all scenarios, especially in nightly and rainy conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于雷达增强图像融合的自动驾驶目标检测
准确、鲁棒的目标检测是实现自动驾驶的必要条件。在现实场景中,基于图像的检测器的有效性受到低能见度或恶劣环境的限制。由于毫米波(mmWave)雷达传感器不受环境变化的影响,它是相机传感器的补充,为雷达与相机融合提供了提高目标检测性能的可能性。在本文中,我们构建了一个用于自动驾驶中二维目标检测的雷达增强图像融合网络(REFNet)。具体而言,将雷达数据投影到相机图像平面上,以统一异构传感模式的数据格式。为了克服雷达点云的稀疏性,考虑到雷达测量的方位不确定性,设计了不确定性雷达块(URB)来增加雷达点的密度。此外,我们还设计了一种支持多级融合的自适应网络架构,并具有确定最佳融合级别的能力。此外,我们在融合网络中加入了一个强大的注意力模块,以利用雷达和相机信息的协同作用。使用规范的nuScenes数据集进行评估,我们提出的方法在所有场景下,特别是在夜间和雨天条件下,始终显著优于仅图像版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model Deep Residual Shrinkage Network With Time-Frequency Features For Bearing Fault Diagnosis Motion parameters estimation of an underwater multitonal source by using field oscillation at different frequencies in deep water Radar-Enhanced Image Fusion-based Object Detection for Autonomous Driving A Reduced-Order Multiple-Model Adaptive Identification Algorithm of Missile Guidance Law
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1