{"title":"Small-World Network Enabled Energy Efficient and Robust 3D NoC Architectures","authors":"Sourav Das, Dongjin Lee, D. Kim, P. Pande","doi":"10.1145/2742060.2742085","DOIUrl":null,"url":null,"abstract":"Three dimensional (3D) Network-on-Chip (NoC) architectures enable design of low power and high performance communication fabrics for multicore chips. In spite of achievable performance benefits, 3D NoCs are still bottlenecked by the planar interconnects. To exploit the benefits introduced by the vertical dimension, it is imperative to explore novel 3D NoC architectures. In this paper, we propose design of a small-world (SW) network based 3D NoCs. We demonstrate that the proposed 3D SW NoC outperforms its conventional 3D mesh-based counterparts. On average, it provides ~25% reduction in the energy delay product (EDP) compared to 3D MESH without introducing any additional link overhead in presence of conventional SPLASH-2 and PARSEC benchmarks. The proposed 3D SW NoC is more robust in presence of TSV failures and performs better than fault-free 3D MESH even in the presence of 25% TSVs failure.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"25 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Three dimensional (3D) Network-on-Chip (NoC) architectures enable design of low power and high performance communication fabrics for multicore chips. In spite of achievable performance benefits, 3D NoCs are still bottlenecked by the planar interconnects. To exploit the benefits introduced by the vertical dimension, it is imperative to explore novel 3D NoC architectures. In this paper, we propose design of a small-world (SW) network based 3D NoCs. We demonstrate that the proposed 3D SW NoC outperforms its conventional 3D mesh-based counterparts. On average, it provides ~25% reduction in the energy delay product (EDP) compared to 3D MESH without introducing any additional link overhead in presence of conventional SPLASH-2 and PARSEC benchmarks. The proposed 3D SW NoC is more robust in presence of TSV failures and performs better than fault-free 3D MESH even in the presence of 25% TSVs failure.