PyTorchFI: A Runtime Perturbation Tool for DNNs

Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte, S. Adve, Christopher W. Fletcher, I. Frosio, S. Hari
{"title":"PyTorchFI: A Runtime Perturbation Tool for DNNs","authors":"Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte, S. Adve, Christopher W. Fletcher, I. Frosio, S. Hari","doi":"10.1109/DSN-W50199.2020.00014","DOIUrl":null,"url":null,"abstract":"PyTorchFI is a runtime perturbation tool for deep neural networks (DNNs), implemented for the popular PyTorch deep learning platform. PyTorchFI enables users to perform perturbations on weights or neurons of DNNs at runtime. It is designed with the programmer in mind, providing a simple and easy-to-use API, requiring as little as three lines of code for use. It also provides an extensible interface, enabling researchers to choose from various perturbation models (or design their own custom models), which allows for the study of hardware error (or general perturbation) propagation to the software layer of the DNN output. Additionally, PyTorchFI is extremely versatile: we demonstrate how it can be applied to five different use cases for dependability and reliability research, including resiliency analysis of classification networks, resiliency analysis of object detection networks, analysis of models robust to adversarial attacks, training resilient models, and for DNN interpertability. This paper discusses the technical underpinnings and design decisions of PyTorchFI which make it an easy-to-use, extensible, fast, and versatile research tool. PyTorchFI is open-sourced and available for download via pip or github at: https://github.com/pytorchfi","PeriodicalId":427687,"journal":{"name":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","volume":"8 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W50199.2020.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

PyTorchFI is a runtime perturbation tool for deep neural networks (DNNs), implemented for the popular PyTorch deep learning platform. PyTorchFI enables users to perform perturbations on weights or neurons of DNNs at runtime. It is designed with the programmer in mind, providing a simple and easy-to-use API, requiring as little as three lines of code for use. It also provides an extensible interface, enabling researchers to choose from various perturbation models (or design their own custom models), which allows for the study of hardware error (or general perturbation) propagation to the software layer of the DNN output. Additionally, PyTorchFI is extremely versatile: we demonstrate how it can be applied to five different use cases for dependability and reliability research, including resiliency analysis of classification networks, resiliency analysis of object detection networks, analysis of models robust to adversarial attacks, training resilient models, and for DNN interpertability. This paper discusses the technical underpinnings and design decisions of PyTorchFI which make it an easy-to-use, extensible, fast, and versatile research tool. PyTorchFI is open-sourced and available for download via pip or github at: https://github.com/pytorchfi
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyTorchFI:一个用于dnn的运行时扰动工具
PyTorchFI是深度神经网络(dnn)的运行时扰动工具,为流行的PyTorch深度学习平台实现。PyTorchFI使用户能够在运行时对dnn的权重或神经元执行扰动。它的设计考虑到了程序员,提供了一个简单易用的API,只需三行代码即可使用。它还提供了一个可扩展的接口,使研究人员能够从各种扰动模型中进行选择(或设计自己的自定义模型),这允许研究硬件错误(或一般扰动)传播到DNN输出的软件层。此外,PyTorchFI是非常通用的:我们展示了如何将它应用于可靠性和可靠性研究的五个不同用例,包括分类网络的弹性分析,对象检测网络的弹性分析,对对抗性攻击的模型分析,训练弹性模型,以及DNN互操作性。本文讨论了PyTorchFI的技术基础和设计决策,使其成为易于使用,可扩展,快速和通用的研究工具。PyTorchFI是开源的,可以通过pip或github下载:https://github.com/pytorchfi
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PyTorchFI: A Runtime Perturbation Tool for DNNs AI Safety Landscape From short-term specific system engineering to long-term artificial general intelligence DSN-W 2020 TOC Approaching certification of complex systems Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1