Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection

M. Moradi, Bentley James Oakes, M. Saraoglu, A. Morozov, K. Janschek, J. Denil
{"title":"Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection","authors":"M. Moradi, Bentley James Oakes, M. Saraoglu, A. Morozov, K. Janschek, J. Denil","doi":"10.1109/DSN-W50199.2020.00028","DOIUrl":null,"url":null,"abstract":"Assessing the safety of complex Cyber-Physical Systems (CPS) is a challenge in any industry. Fault Injection (FI) is a proven technique for safety analysis and is recommended by the automotive safety standard ISO 26262. Traditional FI methods require a considerable amount of effort and cost as FI is applied late in the development cycle and is driven by manual effort or random algorithms. In this paper, we propose a Reinforcement Learning (RL) approach to explore the fault space and find critical faults. During the learning process, the RL agent injects and parameterizes faults in the system to cause catastrophic behavior. The fault space is explored based on a reward function that evaluates previous simulation results such that the RL technique tries to predict improved fault timing and values. In this paper, we apply our technique on an Adaptive Cruise Controller with sensor fusion and compare the proposed method with Monte Carlo-based fault injection. The proposed technique is more efficient in terms of fault coverage and time to find the first critical fault.","PeriodicalId":427687,"journal":{"name":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W50199.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Assessing the safety of complex Cyber-Physical Systems (CPS) is a challenge in any industry. Fault Injection (FI) is a proven technique for safety analysis and is recommended by the automotive safety standard ISO 26262. Traditional FI methods require a considerable amount of effort and cost as FI is applied late in the development cycle and is driven by manual effort or random algorithms. In this paper, we propose a Reinforcement Learning (RL) approach to explore the fault space and find critical faults. During the learning process, the RL agent injects and parameterizes faults in the system to cause catastrophic behavior. The fault space is explored based on a reward function that evaluates previous simulation results such that the RL technique tries to predict improved fault timing and values. In this paper, we apply our technique on an Adaptive Cruise Controller with sensor fusion and compare the proposed method with Monte Carlo-based fault injection. The proposed technique is more efficient in terms of fault coverage and time to find the first critical fault.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的故障注入方法探索故障参数空间
评估复杂的网络物理系统(CPS)的安全性在任何行业都是一个挑战。故障注入(FI)是一种经过验证的安全分析技术,由汽车安全标准ISO 26262推荐。传统的FI方法需要大量的努力和成本,因为FI是在开发周期的后期应用的,并且是由人工或随机算法驱动的。在本文中,我们提出了一种强化学习(RL)方法来探索故障空间并发现关键故障。在学习过程中,RL agent将系统中的故障注入并参数化,从而导致灾难性的行为。故障空间是基于评估先前模拟结果的奖励函数来探索的,因此RL技术试图预测改进的故障时间和值。本文将该方法应用于传感器融合的自适应巡航控制器,并与基于蒙特卡罗的故障注入方法进行了比较。该方法在故障覆盖率和发现第一个关键故障的时间方面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PyTorchFI: A Runtime Perturbation Tool for DNNs AI Safety Landscape From short-term specific system engineering to long-term artificial general intelligence DSN-W 2020 TOC Approaching certification of complex systems Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1