{"title":"High Resolution Modelling And Steady-State Upscaling Of Large Scale Gravity Currents In Heterogeneous Sandstone Reservoirs","authors":"S. Jackson, I. Mayachita, S. Krevor","doi":"10.3997/2214-4609.201802949","DOIUrl":null,"url":null,"abstract":"We investigate the impact of small-scale heterogeneities (<10m) and gravity on large scale O(100m) lateral CO2 plume migration at varying capillary number, Nc and gravity number, Ngv. For isotopically correlated heterogeneities, plume migration was slowed signicantly at low Nc and high Ngv. For anisotropic cases akin to sedimentary geological structures, the plume speed was correspondingly enhanced, with breakthrough times reduced by up to 20% at large correlation lengths. Using relative measures, the capillary pressure was found to be the major control on plume migration as opposed to permeability, at low Nc. Using single, homogenized upscaled functions, we were able to capture the effects of small scale heterogeneities at low or high Nc and moderate Ngv. However, the relative enhancement of the impact of heterogeneities at high Ngv (and low Nc) could not be captured using single homogeneous functions for the entire domain. Without including enhanced gravity effects in the upscaling procedure, which generate anisotropic upscaled functions, the full effects of small-scale heterogeneities in gravity segregated flow could be signicantly underestimated in large scale models, leading to inaccurate plume migration estimates.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"118 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We investigate the impact of small-scale heterogeneities (<10m) and gravity on large scale O(100m) lateral CO2 plume migration at varying capillary number, Nc and gravity number, Ngv. For isotopically correlated heterogeneities, plume migration was slowed signicantly at low Nc and high Ngv. For anisotropic cases akin to sedimentary geological structures, the plume speed was correspondingly enhanced, with breakthrough times reduced by up to 20% at large correlation lengths. Using relative measures, the capillary pressure was found to be the major control on plume migration as opposed to permeability, at low Nc. Using single, homogenized upscaled functions, we were able to capture the effects of small scale heterogeneities at low or high Nc and moderate Ngv. However, the relative enhancement of the impact of heterogeneities at high Ngv (and low Nc) could not be captured using single homogeneous functions for the entire domain. Without including enhanced gravity effects in the upscaling procedure, which generate anisotropic upscaled functions, the full effects of small-scale heterogeneities in gravity segregated flow could be signicantly underestimated in large scale models, leading to inaccurate plume migration estimates.