Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning

A. Demir, Volkan Sezer
{"title":"Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning","authors":"A. Demir, Volkan Sezer","doi":"10.1109/CEIT.2018.8751788","DOIUrl":null,"url":null,"abstract":"In this study, we present a unified motion planner with low- level controller for continuous control of a differential drive mobile robot. Deep reinforcement agent takes 10 dimensional state vector as input and calculates each wheel’s torque value as a 2 dimensional output vector. These torque values are fed into the dynamic model of the robot, and lastly steering commands are gathered. In previous studies, navigation problem solutions that uses deep - RL methods, have not been considered with agent’s own dynamic constraints, but it has been done by only considering kinematic models. This is not reliable enough for real-world scenarios. In this paper, deep-RL based motion planning is performed by considering both kinematic and dynamic constraints. According to the simulations in a dynamic environment, the agent succesfully navigates through the intersection with 99.6% success rate.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"83 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we present a unified motion planner with low- level controller for continuous control of a differential drive mobile robot. Deep reinforcement agent takes 10 dimensional state vector as input and calculates each wheel’s torque value as a 2 dimensional output vector. These torque values are fed into the dynamic model of the robot, and lastly steering commands are gathered. In previous studies, navigation problem solutions that uses deep - RL methods, have not been considered with agent’s own dynamic constraints, but it has been done by only considering kinematic models. This is not reliable enough for real-world scenarios. In this paper, deep-RL based motion planning is performed by considering both kinematic and dynamic constraints. According to the simulations in a dynamic environment, the agent succesfully navigates through the intersection with 99.6% success rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的动态约束下交叉口导航
在本研究中,我们提出了一种统一的运动规划器和低层控制器,用于差动驱动移动机器人的连续控制。深度补强剂以10维状态向量作为输入,计算每个车轮的转矩值作为2维输出向量。将这些扭矩值输入到机器人的动态模型中,最后收集转向命令。在以往的研究中,使用深度强化学习方法求解导航问题时,没有考虑智能体自身的动态约束,而是只考虑运动学模型。对于实际场景来说,这不够可靠。在本文中,基于深度强化学习的运动规划同时考虑了运动学和动力学约束。在动态环境下的仿真结果表明,该智能体通过十字路口的成功率为99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach for Moving Block Signalling System and Safe Distance Calculation Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning Public Health Surveillance System for Online Social Networks using One-Class Text Classification Micro-Flow Sensor Design and Implementation Based on Diamagnetic Levitation Detecting Road Lanes under Extreme Conditions: A Quantitative Performance Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1