An Empirical Study on Fault Prediction using Token-Based Approach

Ishleen Kaur, Neha Bajpai
{"title":"An Empirical Study on Fault Prediction using Token-Based Approach","authors":"Ishleen Kaur, Neha Bajpai","doi":"10.1145/2979779.2979811","DOIUrl":null,"url":null,"abstract":"Since exhaustive testing is not possible, prediction of fault prone modules can be used for prioritizing the components of a software system. Various approaches have been proposed for the prediction of fault prone modules. Most of them uses module metrics as quality estimators. In this study, we proposed a tokenbased approach and combine the metric evaluated from our approach with the module metrics to further improve the prediction results. We conducted the experiment on an open source project for evaluating the approach. The proposed approach is further compared with the existing fault prone filtering technique. The results show that the proposed approach is an improvement over fault prone filtering technique.","PeriodicalId":298730,"journal":{"name":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979779.2979811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since exhaustive testing is not possible, prediction of fault prone modules can be used for prioritizing the components of a software system. Various approaches have been proposed for the prediction of fault prone modules. Most of them uses module metrics as quality estimators. In this study, we proposed a tokenbased approach and combine the metric evaluated from our approach with the module metrics to further improve the prediction results. We conducted the experiment on an open source project for evaluating the approach. The proposed approach is further compared with the existing fault prone filtering technique. The results show that the proposed approach is an improvement over fault prone filtering technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于token的故障预测方法的实证研究
由于详尽的测试是不可能的,对易出错模块的预测可以用于对软件系统的组件进行优先级排序。人们提出了各种方法来预测易发故障模块。他们中的大多数使用模块度量作为质量评估器。在这项研究中,我们提出了一种基于标记的方法,并将我们的方法评估的度量与模块度量相结合,以进一步改善预测结果。我们在一个开源项目上进行了实验,以评估该方法。并将该方法与现有的易故障滤波技术进行了比较。结果表明,该方法是对易故障滤波技术的一种改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm with Mixed Crossover approach for Travelling Salesman Problem An Empirical Study on Fault Prediction using Token-Based Approach Implementing an Authentication Mechanism for Machine Deletion on the Cloud Multi-agent Web Service Composition using Partially Observable Markov Decision Process Forecasting Stock Market Movements Using Various Kernel Functions in Support Vector Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1