A Latent Variable Model State Estimation System for Image Sequences

Nils Kornfeld, Z. Feng
{"title":"A Latent Variable Model State Estimation System for Image Sequences","authors":"Nils Kornfeld, Z. Feng","doi":"10.23919/fusion43075.2019.9011444","DOIUrl":null,"url":null,"abstract":"Self-driving cars need to be able to assess and understand the state of their surroundings. To achieve this goal, it is necessary to construct a model which holds information about the state of the environment based on sensor measurements. In common state estimation systems like Kalman filters, it is necessary to explicitly model state transitions and the observation process. These models have to match the internal dynamics of the observed system as closely as possible to yield reliable estimation results. In this work, we propose a method that can learn an approximation of the internal dynamics of a system, without the need to explicitly model these processes. Our system even works on highly complex data like frames of a video sequence. The approach is based on a latent variable model with a continuous hidden state space. To deal with the fact that the estimated processes are sequential, we use recurrent neural networks. As an example to show the potential of this system, resulting predicted future frames of short video sequences are shown. The proposed system shows a general approach for state estimation without the need for any knowledge about the underlying state transition or observation processes.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Self-driving cars need to be able to assess and understand the state of their surroundings. To achieve this goal, it is necessary to construct a model which holds information about the state of the environment based on sensor measurements. In common state estimation systems like Kalman filters, it is necessary to explicitly model state transitions and the observation process. These models have to match the internal dynamics of the observed system as closely as possible to yield reliable estimation results. In this work, we propose a method that can learn an approximation of the internal dynamics of a system, without the need to explicitly model these processes. Our system even works on highly complex data like frames of a video sequence. The approach is based on a latent variable model with a continuous hidden state space. To deal with the fact that the estimated processes are sequential, we use recurrent neural networks. As an example to show the potential of this system, resulting predicted future frames of short video sequences are shown. The proposed system shows a general approach for state estimation without the need for any knowledge about the underlying state transition or observation processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种图像序列的潜变量模型状态估计系统
自动驾驶汽车需要能够评估和理解周围环境的状态。为了实现这一目标,有必要构建一个基于传感器测量的环境状态信息的模型。在常见的状态估计系统中,如卡尔曼滤波器,有必要显式地对状态转移和观测过程进行建模。这些模型必须尽可能地与观测系统的内部动力学相匹配,以产生可靠的估计结果。在这项工作中,我们提出了一种方法,可以学习系统内部动力学的近似值,而不需要对这些过程进行显式建模。我们的系统甚至可以处理高度复杂的数据,比如视频序列的帧。该方法基于具有连续隐藏状态空间的隐变量模型。为了处理估计过程是连续的这一事实,我们使用递归神经网络。作为展示该系统潜力的一个例子,给出了预测短视频序列未来帧的结果。所提出的系统显示了一种通用的状态估计方法,而不需要任何关于潜在状态转移或观察过程的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuum Detection and Predictive-Corrective Classification of Crack Networks Adaptive BM3D Algorithm for Image Denoising Using Coefficient of Variation A Latent Variable Model State Estimation System for Image Sequences Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1