Camille Palmier, K. Dahia, Nicolas Merlinge, P. Moral, D. Laneuville, C. Musso
{"title":"Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation","authors":"Camille Palmier, K. Dahia, Nicolas Merlinge, P. Moral, D. Laneuville, C. Musso","doi":"10.23919/fusion43075.2019.9011189","DOIUrl":null,"url":null,"abstract":"To perform long-term and long-range missions, underwater vehicles need reliable navigation algorithms. This paper considers multi-beam Terrain Aided Navigation which can provide a drift-free navigation tool. This leads to an estimation problem with implicit observation equation and unknown likelihood. Indeed, the measurement sensor is considered to be a numerical black box model that introduces some unknown stochastic noise. We introduce a measurement updating procedure based on an adaptive kernel derived from Approximate Bayesian Computational filters. The proposed method is based on two well-known particle filters: Regularized Particle Filter and Rao-Blackwellized Particle Filter. Numerical results are presented and the robustness is demonstrated with respect to the original filters, yielding to twice as less non-convergence cases. The proposed method increases the robustness of particle-like filters while remaining computationally efficient.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
To perform long-term and long-range missions, underwater vehicles need reliable navigation algorithms. This paper considers multi-beam Terrain Aided Navigation which can provide a drift-free navigation tool. This leads to an estimation problem with implicit observation equation and unknown likelihood. Indeed, the measurement sensor is considered to be a numerical black box model that introduces some unknown stochastic noise. We introduce a measurement updating procedure based on an adaptive kernel derived from Approximate Bayesian Computational filters. The proposed method is based on two well-known particle filters: Regularized Particle Filter and Rao-Blackwellized Particle Filter. Numerical results are presented and the robustness is demonstrated with respect to the original filters, yielding to twice as less non-convergence cases. The proposed method increases the robustness of particle-like filters while remaining computationally efficient.