Probabilistic branching node detection using AdaBoost and hybrid local features

T. Nuzhnaya, M. Barnathan, Haibin Ling, V. Megalooikonomou, P. Bakic, Andrew D. A. Maidment
{"title":"Probabilistic branching node detection using AdaBoost and hybrid local features","authors":"T. Nuzhnaya, M. Barnathan, Haibin Ling, V. Megalooikonomou, P. Bakic, Andrew D. A. Maidment","doi":"10.1109/ISBI.2010.5490375","DOIUrl":null,"url":null,"abstract":"Probabilistic branching node inference is an important step for analyzing branching patterns involved in many anatomic structures. Based on an approach we have developed previously, we investigate combining machine learning techniques and hybrid image statistics for probabilistic branching node inference, using adaptive boosting as a probabilistic inference framework. Then, we use local image statistics at different image scales for feature representation, including the Harris cornerness, Laplacian, eigenvalues of the Hessian, and Harralick texture features. The proposed approach is applied to a breast imaging dataset consisting of 30 images, 7 of which were previously reported. The use of boosting and the Harralick texture feature further improves upon our previous results, highlighting the role of texture in the analysis of the breast ducts and other branching structures.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Probabilistic branching node inference is an important step for analyzing branching patterns involved in many anatomic structures. Based on an approach we have developed previously, we investigate combining machine learning techniques and hybrid image statistics for probabilistic branching node inference, using adaptive boosting as a probabilistic inference framework. Then, we use local image statistics at different image scales for feature representation, including the Harris cornerness, Laplacian, eigenvalues of the Hessian, and Harralick texture features. The proposed approach is applied to a breast imaging dataset consisting of 30 images, 7 of which were previously reported. The use of boosting and the Harralick texture feature further improves upon our previous results, highlighting the role of texture in the analysis of the breast ducts and other branching structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AdaBoost和混合局部特征的概率分支节点检测
概率分支节点推理是分析许多解剖结构分支模式的重要步骤。基于我们之前开发的一种方法,我们研究了将机器学习技术和混合图像统计相结合用于概率分支节点推理,使用自适应增强作为概率推理框架。然后,我们使用不同图像尺度的局部图像统计进行特征表示,包括Harris角度、拉普拉斯特征、Hessian特征值和Harralick纹理特征。该方法被应用于一个由30张图像组成的乳房成像数据集,其中7张是以前报道过的。增强和Harralick纹理特征的使用进一步改善了我们之前的结果,突出了纹理在分析乳腺导管和其他分支结构中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1