3D image processing using deep neural network

T. Fujii
{"title":"3D image processing using deep neural network","authors":"T. Fujii","doi":"10.1117/12.2523171","DOIUrl":null,"url":null,"abstract":"In 3D image processing field, many researches have been conducted, such as multiview image coding and data compression, view interpolation, coded aperture based light field acquisition, and light field display signal calculation. The challenge of these technologies is that they usually require heavy computation due to the large amount of data. In this paper, we report the results of some experiments where we replace these computation with deep neural network (DNN) and convolutional neural network (CNN). In some of the cases, DNN and CNN show better performance than conventional methods both in quality and calculation speed.","PeriodicalId":350781,"journal":{"name":"Three-Dimensional Imaging, Visualization, and Display 2019","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Imaging, Visualization, and Display 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2523171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 3D image processing field, many researches have been conducted, such as multiview image coding and data compression, view interpolation, coded aperture based light field acquisition, and light field display signal calculation. The challenge of these technologies is that they usually require heavy computation due to the large amount of data. In this paper, we report the results of some experiments where we replace these computation with deep neural network (DNN) and convolutional neural network (CNN). In some of the cases, DNN and CNN show better performance than conventional methods both in quality and calculation speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的三维图像处理
在三维图像处理领域进行了多视点图像编码与数据压缩、视点插值、基于编码孔径的光场采集、光场显示信号计算等方面的研究。这些技术的挑战在于,由于数据量大,它们通常需要大量的计算。在本文中,我们报告了一些用深度神经网络(DNN)和卷积神经网络(CNN)代替这些计算的实验结果。在某些情况下,DNN和CNN在质量和计算速度上都比传统方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 10997 Compressive sensing with variable density sampling for 3D imaging Active 3D fluorescence imaging based on holography AR optics using two depths An overview of spatial-temporal human gesture recognition under degraded environments using integral imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1