CHASE

Chao Zhang, Jingbo Zhou, Xiaolin Zang, Qing Xu, Liang Yin, Xiang He, Lin Liu, H. Xiong, D. Dou
{"title":"CHASE","authors":"Chao Zhang, Jingbo Zhou, Xiaolin Zang, Qing Xu, Liang Yin, Xiang He, Lin Liu, H. Xiong, D. Dou","doi":"10.1145/3459637.3481902","DOIUrl":null,"url":null,"abstract":"While online advertising is one of the major sources of income for search engines, pumping up the incomes from business advertisements while ensuring the user experience becomes a challenging but emerging area. Designing high-quality advertisements with persuasive content has been proved as a way to increase revenues through improving the Click-Through Rate (CTR). However, it is difficult to scale up the design of high-quality ads, due to the lack of automation in creativity. In this paper, we present Commonsense-Enriched Advertisement on Search Engine (CHASE) --- a system for the automatic generation of persuasive ads. CHASE adopts a specially designed language model that fuses the keywords, commonsense-related texts, and marketing contents to generate persuasive advertisements. Specifically, the language model has been pre-trained using massive contents of explicit knowledge and fine-tuned with well-constructed quasi-parallel corpora with effective control of the proportion of commonsense in the generated ads and fitness to the ads' keywords. The effectiveness of the proposed method CHASE has been verified by real-world web traffics for search and manual evaluation. In A/B tests, the advertisements generated by CHASE would bring 11.13% CTR improvement. The proposed model has been deployed to cover three advertisement domains (which are kid education, psychological counseling, and beauty e-commerce) at Baidu, the world's largest Chinese search engine, with adding revenue of about 1 million RMB (Chinese Yuan) per day.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

While online advertising is one of the major sources of income for search engines, pumping up the incomes from business advertisements while ensuring the user experience becomes a challenging but emerging area. Designing high-quality advertisements with persuasive content has been proved as a way to increase revenues through improving the Click-Through Rate (CTR). However, it is difficult to scale up the design of high-quality ads, due to the lack of automation in creativity. In this paper, we present Commonsense-Enriched Advertisement on Search Engine (CHASE) --- a system for the automatic generation of persuasive ads. CHASE adopts a specially designed language model that fuses the keywords, commonsense-related texts, and marketing contents to generate persuasive advertisements. Specifically, the language model has been pre-trained using massive contents of explicit knowledge and fine-tuned with well-constructed quasi-parallel corpora with effective control of the proportion of commonsense in the generated ads and fitness to the ads' keywords. The effectiveness of the proposed method CHASE has been verified by real-world web traffics for search and manual evaluation. In A/B tests, the advertisements generated by CHASE would bring 11.13% CTR improvement. The proposed model has been deployed to cover three advertisement domains (which are kid education, psychological counseling, and beauty e-commerce) at Baidu, the world's largest Chinese search engine, with adding revenue of about 1 million RMB (Chinese Yuan) per day.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
追逐
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1