Crawler Detection in Location-Based Services Using Attributed Action Net

Wei Xia, Fei Zhao, Haishuai Wang, Peng Zhang, Anhui Wang, Kang Li
{"title":"Crawler Detection in Location-Based Services Using Attributed Action Net","authors":"Wei Xia, Fei Zhao, Haishuai Wang, Peng Zhang, Anhui Wang, Kang Li","doi":"10.1145/3459637.3481907","DOIUrl":null,"url":null,"abstract":"Malicious Web crawlers threaten information system due to heavily taking up bandwidth resources and stealing private user data. Ele.me, a prevalent on-demand food delivery platform in China, suffers from the negative impact of crawlers. The crawler detection systems face two major challenges: spatial patterns of the crawler behaviors and limited labeled data for training. In this paper, we present efficient solutions to tackle these challenges. Specifically, we propose a new Attributed Action Net (AANet for short) model to detect Location-Based Services~(LBS) crawlers and a three-stage learning framework to train the model. AANet consists of three different embedding modules, including the action token sequence, temporal-spatial attributes of users, and the context information of the raw data. We have deployed the model at Ele.me, and both offline experiments and online A/B tests show that the proposed method is superior to the state-of-the-art models for sequence data classification on the food delivery platform.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malicious Web crawlers threaten information system due to heavily taking up bandwidth resources and stealing private user data. Ele.me, a prevalent on-demand food delivery platform in China, suffers from the negative impact of crawlers. The crawler detection systems face two major challenges: spatial patterns of the crawler behaviors and limited labeled data for training. In this paper, we present efficient solutions to tackle these challenges. Specifically, we propose a new Attributed Action Net (AANet for short) model to detect Location-Based Services~(LBS) crawlers and a three-stage learning framework to train the model. AANet consists of three different embedding modules, including the action token sequence, temporal-spatial attributes of users, and the context information of the raw data. We have deployed the model at Ele.me, and both offline experiments and online A/B tests show that the proposed method is superior to the state-of-the-art models for sequence data classification on the food delivery platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位置服务的归属动作网络爬虫检测
恶意网络爬虫由于大量占用带宽资源和窃取用户隐私数据,对信息系统构成威胁。避署。在中国很流行的按需送餐平台my,就受到了爬虫的负面影响。爬虫检测系统面临两个主要挑战:爬虫行为的空间模式和有限的标记数据用于训练。在本文中,我们提出了应对这些挑战的有效解决方案。具体来说,我们提出了一种新的归属动作网络(AANet)模型来检测基于位置的服务(LBS)爬虫,并提出了一个三阶段学习框架来训练该模型。AANet由三个不同的嵌入模块组成,包括动作令牌序列、用户的时空属性和原始数据的上下文信息。我们已经在Ele部署了这个模型。离线实验和在线A/B测试均表明,本文提出的方法在外卖平台序列数据分类方面优于目前最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1