Improved position estimation by fusing multiple inaccurate inertial measurement unit sensors

Yuhao Zhang, Chenghao Lyu, Haotian Xu, Yijing Xia, Fei Feng, Gurjeet Singh, Patrick Chiang, X. Wang
{"title":"Improved position estimation by fusing multiple inaccurate inertial measurement unit sensors","authors":"Yuhao Zhang, Chenghao Lyu, Haotian Xu, Yijing Xia, Fei Feng, Gurjeet Singh, Patrick Chiang, X. Wang","doi":"10.1109/IEEE-IWS.2016.7585483","DOIUrl":null,"url":null,"abstract":"This paper presents improved position tracking and location estimation of dead reckoning, by combining the data from multiple inaccurate inertial sensors together using unscented Kalman filtering (UKF). Experimental test results using two 9-axis inertial measurement unit (IMU) sensors show that position estimation of each sensor achieves a 26 % decrease in max error (ME) and a 37% improvement in root-mean-square error (RMSE), when compared with a single independent sensor.","PeriodicalId":185971,"journal":{"name":"2016 IEEE MTT-S International Wireless Symposium (IWS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2016.7585483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents improved position tracking and location estimation of dead reckoning, by combining the data from multiple inaccurate inertial sensors together using unscented Kalman filtering (UKF). Experimental test results using two 9-axis inertial measurement unit (IMU) sensors show that position estimation of each sensor achieves a 26 % decrease in max error (ME) and a 37% improvement in root-mean-square error (RMSE), when compared with a single independent sensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过融合多个不准确惯性测量单元传感器改进位置估计
利用无气味卡尔曼滤波(unscented Kalman filtering, UKF)将多个不准确惯性传感器的数据结合在一起,提出了一种改进的航迹推算的位置跟踪和位置估计方法。使用两个9轴惯性测量单元(IMU)传感器的实验测试结果表明,与单个独立传感器相比,每个传感器的位置估计最大误差(ME)降低了26%,均方根误差(RMSE)提高了37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved position estimation by fusing multiple inaccurate inertial measurement unit sensors A low-cost, system-on-chip for Optical Time Domain Reflectometry (OTDR) Method for estimating the distance between multiple IMU-based wearable devices A wideband microstrip balanced-to-single-ended out-of-phase power divider A practicable de-embedding network at higher frequency of a packaged GaN device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1