Adaptive estimation of parameters using partial information of desired outputs

J. Joseph, K. Hari
{"title":"Adaptive estimation of parameters using partial information of desired outputs","authors":"J. Joseph, K. Hari","doi":"10.1109/TENCON.2003.1273438","DOIUrl":null,"url":null,"abstract":"A general framework for forming an adaptive algorithm for problems where only partial information about the desired output is available, is proposed. Based on preliminary analysis it can be shown that this framework can be used to efficiently choose deep, narrow minima when there are many local minima. For problems like separation of instantaneous mixtures (independent component analysis, ICA) and separation of convolutive mixtures when cast in the proposed framework is shown to give the same efficient algorithms as those available in the literature.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A general framework for forming an adaptive algorithm for problems where only partial information about the desired output is available, is proposed. Based on preliminary analysis it can be shown that this framework can be used to efficiently choose deep, narrow minima when there are many local minima. For problems like separation of instantaneous mixtures (independent component analysis, ICA) and separation of convolutive mixtures when cast in the proposed framework is shown to give the same efficient algorithms as those available in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用期望输出的部分信息自适应估计参数
对于只有部分期望输出信息可用的问题,提出了形成自适应算法的一般框架。初步分析表明,在局部极小值较多的情况下,该框架可以有效地选择深、窄极小值。对于瞬时混合物的分离(独立分量分析,ICA)和卷积混合物的分离等问题,所提出的框架显示出与文献中可用的算法相同的高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Script to speech conversion for Marathi language Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms VHDL based design of an FDWT processor High frequency industrial power supplies using inductor alternators driven by bio-mass gasifier based systems Adaptive estimation of parameters using partial information of desired outputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1