Application of Machine Learning in the producer's optimal control problem with non-stable demand

Aleksandr Delev, A. Zhukova, A. Flerova
{"title":"Application of Machine Learning in the producer's optimal control problem with non-stable demand","authors":"Aleksandr Delev, A. Zhukova, A. Flerova","doi":"10.1109/CoDIT55151.2022.9803997","DOIUrl":null,"url":null,"abstract":"Profit is one of the key performance indicators of the company and each company needs to allocate resources in such a way that it achieves the greatest possible profit. The profit maximization problem is typically a dynamic optimization problem. This paper considers an approach to solving the problem of expanding production, using methods of Reinforcement Learning. The goal is to choose the firm's strategy for the long term: how to use the resources to maximize profits in the long-term period. To make the problem realistic, we consider the case of unstable demand. We study applicability of machine learning methods to optimal control problems, in particular Reinforcement Learning (RL), to optimal control problems arising in economics. To confirm or refute this possibility, we compare the analytical solution to the problem and the estimate obtained using the RL algorithms.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"174 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9803997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Profit is one of the key performance indicators of the company and each company needs to allocate resources in such a way that it achieves the greatest possible profit. The profit maximization problem is typically a dynamic optimization problem. This paper considers an approach to solving the problem of expanding production, using methods of Reinforcement Learning. The goal is to choose the firm's strategy for the long term: how to use the resources to maximize profits in the long-term period. To make the problem realistic, we consider the case of unstable demand. We study applicability of machine learning methods to optimal control problems, in particular Reinforcement Learning (RL), to optimal control problems arising in economics. To confirm or refute this possibility, we compare the analytical solution to the problem and the estimate obtained using the RL algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在非稳定需求生产者最优控制问题中的应用
利润是公司的关键绩效指标之一,每个公司都需要以实现最大利润的方式配置资源。利润最大化问题是典型的动态优化问题。本文考虑了一种利用强化学习方法来解决扩大生产问题的方法。目标是选择公司的长期战略:如何利用资源在长期内实现利润最大化。为了使问题更现实,我们考虑不稳定需求的情况。我们研究机器学习方法对最优控制问题的适用性,特别是强化学习(RL),对经济学中出现的最优控制问题的适用性。为了证实或反驳这种可能性,我们比较了问题的解析解和使用RL算法获得的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Human Model Parameters for the Human-Machine Control Systems Design A Dual-channel Attention Model for Optical Microscope Pollen Classification Application of Machine Learning in the producer's optimal control problem with non-stable demand Comparison Between Model-Based and Data-Based Methods for Fault Diagnosis of Railway Turnouts Improved Multi-Particle Swarm Optimization based on multi-exemplar and forgetting ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1