An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier

S. Chaudhari, R. Gulati
{"title":"An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier","authors":"S. Chaudhari, R. Gulati","doi":"10.1109/ISSP.2013.6526900","DOIUrl":null,"url":null,"abstract":"This paper addresses the script identification problem of bilingual printed document images. We propose an OCR system that separates and identify mixed English-Gujarati digits. Here, first the system is trained with standard data samples. Then for testing, data samples are collected from different sources of paper like, news paper, book, magazine, etc. Random sized pre-processed image is normalized to uniform sized image. A statistical approach is used for feature extraction. For classification kNN classifier is used. The model gives average accuracy of 99.26% for Gujarati digits, 99.20% for English digits, and overall accuracy 99.23%.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper addresses the script identification problem of bilingual printed document images. We propose an OCR system that separates and identify mixed English-Gujarati digits. Here, first the system is trained with standard data samples. Then for testing, data samples are collected from different sources of paper like, news paper, book, magazine, etc. Random sized pre-processed image is normalized to uniform sized image. A statistical approach is used for feature extraction. For classification kNN classifier is used. The model gives average accuracy of 99.26% for Gujarati digits, 99.20% for English digits, and overall accuracy 99.23%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用kNN分类器分离和识别混合英语-古吉拉特数字的OCR
本文研究了双语印刷文档图像的文字识别问题。我们提出了一个OCR系统,分离和识别混合英语-古吉拉特数字。在这里,首先用标准数据样本训练系统。然后进行测试,从不同来源的纸张,如报纸,书籍,杂志等收集数据样本。将随机大小的预处理图像归一化为均匀大小的图像。采用统计方法进行特征提取。分类使用kNN分类器。该模型对古吉拉特数字的平均准确率为99.26%,对英语数字的平均准确率为99.20%,总体准确率为99.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic sign representation using sparse-representations Adaptive fractal intra-frame video coding technique using parallel GPU environment An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier An intelligent technique based on code algorithm for determination of optimum gain values of PID controller in an AGC system Language identification system using MFCC and prosodic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1