Traffic sign representation using sparse-representations

B. Chandrasekhar, V. S. Babu, S. S. Medasani
{"title":"Traffic sign representation using sparse-representations","authors":"B. Chandrasekhar, V. S. Babu, S. S. Medasani","doi":"10.1109/ISSP.2013.6526937","DOIUrl":null,"url":null,"abstract":"Automatic Traffic Sign Recognition has gained significant impetus among the research community in recent times. Increasing demands in the arenas of Autonomous Vehicle Navigation and Driver Assistance Systems is making this field of research more attractive. In this paper, we developed a technique which uses Sparse Representation based Classification coupled with Boundary Discriminative Factor (BDF) for recognizing traffic signs. The performance of this system is compared with one of the existing classifiers, Convolutional Neural Networks (CNNs) which has been employed in many real-time systems. This method also helps in reducing the enormous training time required for CNNs.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Automatic Traffic Sign Recognition has gained significant impetus among the research community in recent times. Increasing demands in the arenas of Autonomous Vehicle Navigation and Driver Assistance Systems is making this field of research more attractive. In this paper, we developed a technique which uses Sparse Representation based Classification coupled with Boundary Discriminative Factor (BDF) for recognizing traffic signs. The performance of this system is compared with one of the existing classifiers, Convolutional Neural Networks (CNNs) which has been employed in many real-time systems. This method also helps in reducing the enormous training time required for CNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用稀疏表示的交通标志表示
近年来,自动交通标志识别在研究领域得到了很大的发展。在自动驾驶汽车导航和驾驶辅助系统领域不断增长的需求使得这一领域的研究更具吸引力。本文提出了一种基于稀疏表示的分类与边界判别因子相结合的交通标志识别技术。将该系统的性能与卷积神经网络(cnn)进行了比较,卷积神经网络已被应用于许多实时系统中。这种方法还有助于减少cnn所需的大量训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic sign representation using sparse-representations Adaptive fractal intra-frame video coding technique using parallel GPU environment An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier An intelligent technique based on code algorithm for determination of optimum gain values of PID controller in an AGC system Language identification system using MFCC and prosodic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1