Shape restoration for robust tangent principal component analysis

Michel Abboud, A. Benzinou, K. Nasreddine, M. Jazar
{"title":"Shape restoration for robust tangent principal component analysis","authors":"Michel Abboud, A. Benzinou, K. Nasreddine, M. Jazar","doi":"10.1109/IPTA.2015.7367190","DOIUrl":null,"url":null,"abstract":"Shape outliers can seriously affect the statistical analysis of the shape variations usually performed by the Principal Component Analysis PCA. This paper presents an algorithm for outliers detection and shape restoration as a new strategy for robust statistical shape analysis. The proposed framework is founded on an elastic metric in the shape space to cope with the nonlinear shape variability. The main contribution of this work is then a formulation of a robust PCA which describes main variations associated to correct shapes without outlier effects. The efficiency of this approach is demonstrated by an evaluation carried out on HAND-Kimia and HEART-Kimia databases.","PeriodicalId":406232,"journal":{"name":"International Conference on Image Processing Theory Tools and Applications","volume":"170 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing Theory Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2015.7367190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shape outliers can seriously affect the statistical analysis of the shape variations usually performed by the Principal Component Analysis PCA. This paper presents an algorithm for outliers detection and shape restoration as a new strategy for robust statistical shape analysis. The proposed framework is founded on an elastic metric in the shape space to cope with the nonlinear shape variability. The main contribution of this work is then a formulation of a robust PCA which describes main variations associated to correct shapes without outlier effects. The efficiency of this approach is demonstrated by an evaluation carried out on HAND-Kimia and HEART-Kimia databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒切主成分分析的形状恢复
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special session on Statistical Image analysis for computer-aided detection and diagnosis on medical and biological images (SIA-MBI) Shape restoration for robust tangent principal component analysis A New Generative Adversarial Network for Texture Preserving Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1