A New Generative Adversarial Network for Texture Preserving Image Denoising

Zhiping Qu, Yuanqi Zhang, Yi Sun, Xiangbo Lin
{"title":"A New Generative Adversarial Network for Texture Preserving Image Denoising","authors":"Zhiping Qu, Yuanqi Zhang, Yi Sun, Xiangbo Lin","doi":"10.1109/IPTA.2018.8608126","DOIUrl":null,"url":null,"abstract":"In this paper, a new generative adversarial networks (GAN) is proposed for image denoising. The proposed GAN has a new generator network to produce denoised images with noisy images as input, and the entire network is trained using a new loss to represent the distance between the data distribution of clean images and denoised images. Based on quantitative and qualitative evaluating criteria, we made comparisons between our method and other denoising methods which shows the superiority of our approach. Keywords—Image denoising, Generative adversarial network, Loss function, Texture Preserving.","PeriodicalId":406232,"journal":{"name":"International Conference on Image Processing Theory Tools and Applications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing Theory Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, a new generative adversarial networks (GAN) is proposed for image denoising. The proposed GAN has a new generator network to produce denoised images with noisy images as input, and the entire network is trained using a new loss to represent the distance between the data distribution of clean images and denoised images. Based on quantitative and qualitative evaluating criteria, we made comparisons between our method and other denoising methods which shows the superiority of our approach. Keywords—Image denoising, Generative adversarial network, Loss function, Texture Preserving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的纹理保持图像去噪的生成对抗网络
本文提出了一种新的生成对抗网络(GAN)用于图像去噪。所提出的GAN具有一个新的生成器网络,以噪声图像作为输入产生去噪图像,并且整个网络使用一个新的损失来表示干净图像和去噪图像的数据分布之间的距离。在定量和定性评价标准的基础上,将该方法与其他去噪方法进行了比较,表明了该方法的优越性。关键词:图像去噪,生成对抗网络,损失函数,纹理保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special session on Statistical Image analysis for computer-aided detection and diagnosis on medical and biological images (SIA-MBI) Shape restoration for robust tangent principal component analysis A New Generative Adversarial Network for Texture Preserving Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1