An improved Bayes fusion algorithm with the Parzen window method

G. Wang, De-gan Zhang, Hai Zhao
{"title":"An improved Bayes fusion algorithm with the Parzen window method","authors":"G. Wang, De-gan Zhang, Hai Zhao","doi":"10.1109/ICIF.2002.1021216","DOIUrl":null,"url":null,"abstract":"In this paper, a new Bayes fusion algorithm with the Parzen window method, which introduces the non-parameter estimation method of partition recognition into traditional Bayes fusion criterion, is propose. During the process of fusion, which is a repetitious and iterative process, conditional probability density is continuously modified and learned using the Parzen window method, and the global decision is obtained at the fusion center under the bayes decision criterion. In the practical application, the method has been successfully applied into the temperature fault detection and diagnosis system of hydroelectric simulation system of J. Fengman. The analysis of data indicates that the improved algorithm takes precedence over the traditional Bayes criterion.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new Bayes fusion algorithm with the Parzen window method, which introduces the non-parameter estimation method of partition recognition into traditional Bayes fusion criterion, is propose. During the process of fusion, which is a repetitious and iterative process, conditional probability density is continuously modified and learned using the Parzen window method, and the global decision is obtained at the fusion center under the bayes decision criterion. In the practical application, the method has been successfully applied into the temperature fault detection and diagnosis system of hydroelectric simulation system of J. Fengman. The analysis of data indicates that the improved algorithm takes precedence over the traditional Bayes criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的基于Parzen窗的贝叶斯融合算法
本文提出了一种新的基于Parzen窗的贝叶斯融合算法,将分割识别的非参数估计方法引入到传统贝叶斯融合准则中。融合过程是一个重复迭代的过程,利用Parzen窗口法不断修正和学习条件概率密度,在bayes决策准则下在融合中心得到全局决策。在实际应用中,该方法已成功应用于J. Fengman水电站仿真系统的温度故障检测与诊断系统中。数据分析表明,改进后的算法优于传统的贝叶斯准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1