Extracting latent structures in numerical classification: an investigation using two factor models

Arindam Choudhury, Y. Ong, A. Keane
{"title":"Extracting latent structures in numerical classification: an investigation using two factor models","authors":"Arindam Choudhury, Y. Ong, A. Keane","doi":"10.1109/ICONIP.2002.1198992","DOIUrl":null,"url":null,"abstract":"We investigate the use of SVD based two factor models for numerical data classification. Motivations for such a study include the widespread success of such models (e.g, LSI) in textual information retrieval, emerging connections with well established statistical techniques and the increasing occurrence of mixed mode (text-and-numeric) data. A direct extension as well as an efficient modification of the LSI model applied to numerical data problems are presented and the associated problems and likely remedies discussed. The techniques under investigation are shown to perform competitively with respect to popular existing numerical classification techniques on a range of synthetic and real world benchmark data. In particular, we show that the modified LSI proposed in this work avoids confronting the optimal subspace selection problem yet generalizes well and remains computationally efficient for large data.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"12 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the use of SVD based two factor models for numerical data classification. Motivations for such a study include the widespread success of such models (e.g, LSI) in textual information retrieval, emerging connections with well established statistical techniques and the increasing occurrence of mixed mode (text-and-numeric) data. A direct extension as well as an efficient modification of the LSI model applied to numerical data problems are presented and the associated problems and likely remedies discussed. The techniques under investigation are shown to perform competitively with respect to popular existing numerical classification techniques on a range of synthetic and real world benchmark data. In particular, we show that the modified LSI proposed in this work avoids confronting the optimal subspace selection problem yet generalizes well and remains computationally efficient for large data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数值分类中潜在结构的提取:基于双因子模型的研究
我们研究了基于SVD的两因子模型在数值数据分类中的应用。这种研究的动机包括这种模型(例如LSI)在文本信息检索方面的广泛成功,与完善的统计技术的新兴联系以及混合模式(文本和数字)数据的日益增加。提出了应用于数值数据问题的LSI模型的直接扩展和有效修改,并讨论了相关问题和可能的补救措施。在一系列合成和真实世界基准数据上,所研究的技术显示出与流行的现有数字分类技术相比具有竞争力。特别地,我们表明在这项工作中提出的改进LSI避免了面对最优子空间选择问题,但泛化良好,并且在大数据中保持计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1