P. A. Cooper, L. Carpenter, P. Mennea, C. Holmes, J. Gates, Peter G. R. Smith
{"title":"Optomechanical cantilever device for displacement sensing and variable attenuator","authors":"P. A. Cooper, L. Carpenter, P. Mennea, C. Holmes, J. Gates, Peter G. R. Smith","doi":"10.1117/12.2039806","DOIUrl":null,"url":null,"abstract":"An optomechanical dual cantilever device has been fabricated with applications as a displacement sensor and variable attenuator. A novel fabrication approach using a precision dicing saw has benefits for fabrication time, cost and energy consumption. The displacement sensor sensitivity is 0.8 dB/micron and a suppression ratio of 25 dB is obtained when the device is used as an attenuator.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":" 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2039806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An optomechanical dual cantilever device has been fabricated with applications as a displacement sensor and variable attenuator. A novel fabrication approach using a precision dicing saw has benefits for fabrication time, cost and energy consumption. The displacement sensor sensitivity is 0.8 dB/micron and a suppression ratio of 25 dB is obtained when the device is used as an attenuator.