{"title":"Numerical study on the hydrate-rich sediment behaviour during depressurization","authors":"S. Wani, R. Samala, R. Kandasami, A. Chaudhuri","doi":"10.23967/wccm-apcom.2022.086","DOIUrl":null,"url":null,"abstract":". Exploratory studies have been carried out to identify the potential natural gas hydrate reserves for commercially producing gas. While extracting the gas from the hydrate-bearing sediments using various dissociation techniques, there will be a significant loss of strength in these sediments. It is well known that the behavior of gas hydrate sediments is governed by Thermo Hydro Mechanical Chemical – THMC coupled process during the gas extraction. Thus, in this study, in order to understand the influence of depressurization at the well-bore and the permeability of the hydrate reservoir on the sediment deformation characteristics, a 2D (plane strain condition) hydrate reservoir is simulated (using a multiphase numerical schema). From the study, it is observed that the flow response, i.e., the rate of change of gas pressure near the well-bore, decreases with the increase in the duration of the extraction. The maximum settlement occurs for reservoirs having low well-bore pressure (higher amount of depressurization) and high intrinsic permeability. Additionally, these same reservoir conditions also lead to maximum cumulative gas production. Thus, the continuous gas","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"18 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
. Exploratory studies have been carried out to identify the potential natural gas hydrate reserves for commercially producing gas. While extracting the gas from the hydrate-bearing sediments using various dissociation techniques, there will be a significant loss of strength in these sediments. It is well known that the behavior of gas hydrate sediments is governed by Thermo Hydro Mechanical Chemical – THMC coupled process during the gas extraction. Thus, in this study, in order to understand the influence of depressurization at the well-bore and the permeability of the hydrate reservoir on the sediment deformation characteristics, a 2D (plane strain condition) hydrate reservoir is simulated (using a multiphase numerical schema). From the study, it is observed that the flow response, i.e., the rate of change of gas pressure near the well-bore, decreases with the increase in the duration of the extraction. The maximum settlement occurs for reservoirs having low well-bore pressure (higher amount of depressurization) and high intrinsic permeability. Additionally, these same reservoir conditions also lead to maximum cumulative gas production. Thus, the continuous gas