Optimization of Missile Path Planning Based on APMO-HV Algorithm

Hu Zhang, Shuai Wang, Tonglin Liu, Aimin Zhou, Yi Zhang
{"title":"Optimization of Missile Path Planning Based on APMO-HV Algorithm","authors":"Hu Zhang, Shuai Wang, Tonglin Liu, Aimin Zhou, Yi Zhang","doi":"10.1109/ICUS48101.2019.8996084","DOIUrl":null,"url":null,"abstract":"In this paper, with considerations of low efficiency of missile path planning (MPP) by traditional aggregation technology, it uses affinity propagation based multi-objective evolutionary algorithm with hypervolume environment selection (APMO-HV) to solve the problem of MPP after establishing the MPP model. The experimental part compares and analyzes APMO-HV with six state-of-the-art algorithms, and applies it to address the MPP problem. The experimental results show that compared with the other six algorithms, APMO-HV has achieved the best solution performance in both the GLT test suite and MPP problem. This not only validates the effect of the proposed algorithm, but also enriches and improves the research results of MPP.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"28 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8996084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, with considerations of low efficiency of missile path planning (MPP) by traditional aggregation technology, it uses affinity propagation based multi-objective evolutionary algorithm with hypervolume environment selection (APMO-HV) to solve the problem of MPP after establishing the MPP model. The experimental part compares and analyzes APMO-HV with six state-of-the-art algorithms, and applies it to address the MPP problem. The experimental results show that compared with the other six algorithms, APMO-HV has achieved the best solution performance in both the GLT test suite and MPP problem. This not only validates the effect of the proposed algorithm, but also enriches and improves the research results of MPP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于APMO-HV算法的导弹路径规划优化
本文针对传统聚合技术在导弹路径规划(MPP)中效率较低的问题,在建立了导弹路径规划模型后,采用基于亲和传播的hypervolume环境选择多目标进化算法(APMO-HV)解决导弹路径规划问题。实验部分对APMO-HV算法与六种最先进的算法进行了比较分析,并将其应用于MPP问题。实验结果表明,与其他6种算法相比,APMO-HV算法在GLT测试套件和MPP问题上都取得了最佳的求解性能。这不仅验证了所提算法的效果,而且丰富和完善了MPP的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase Compensation Based Multi-frame Coherent Integration for Drone Detection with Radar Optimization of Missile Path Planning Based on APMO-HV Algorithm Cross-cycle iterative unmanned aerial vehicle reentry guidance based on reinforcement learning Study on Unsteady Aerodynamic Characteristics of Bionic Flapping Wing Aircraft Research on Integrated Design of Guidance and Control for Hypersonic Vehicle Based on Trajectory Linearization Control Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1