Correlation sketching for ordered data

Juan P. Hoyos, R. Carrillo, Sebastian Pazos, Pablo E. Jojoa
{"title":"Correlation sketching for ordered data","authors":"Juan P. Hoyos, R. Carrillo, Sebastian Pazos, Pablo E. Jojoa","doi":"10.1109/LATINCOM.2017.8240177","DOIUrl":null,"url":null,"abstract":"Methods based on order statistics are often used in finance, quality control, data and signal processing, especially when signals of interest are immersed in impulsive noise. These allow to include rank information by increasing the dimension of the problem. In large dimension problems, we are usually required to know only the second order statistics. In this article we use a rank-one quadratic measurement model based on sketches to estimate the correlation matrix for ordered data. Furthermore, we exploit this matrix's structure to design a convex relaxation optimization problem to recover the matrix. This reconstruction takes a number of measurements proportional to the original size of the problem (without ordering). We provide simulations to show the reconstruction performance of the proposed scheme, and the robustness of this estimation when uniform noise is present.","PeriodicalId":190644,"journal":{"name":"2017 IEEE 9th Latin-American Conference on Communications (LATINCOM)","volume":"30 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 9th Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM.2017.8240177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Methods based on order statistics are often used in finance, quality control, data and signal processing, especially when signals of interest are immersed in impulsive noise. These allow to include rank information by increasing the dimension of the problem. In large dimension problems, we are usually required to know only the second order statistics. In this article we use a rank-one quadratic measurement model based on sketches to estimate the correlation matrix for ordered data. Furthermore, we exploit this matrix's structure to design a convex relaxation optimization problem to recover the matrix. This reconstruction takes a number of measurements proportional to the original size of the problem (without ordering). We provide simulations to show the reconstruction performance of the proposed scheme, and the robustness of this estimation when uniform noise is present.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有序数据的关联草图
基于顺序统计的方法常用于金融、质量控制、数据和信号处理,特别是当感兴趣的信号被淹没在脉冲噪声中时。这允许通过增加问题的维度来包含排名信息。在大维度问题中,我们通常只需要知道二阶统计量。在本文中,我们使用基于草图的一阶二次测量模型来估计有序数据的相关矩阵。进一步,利用该矩阵的结构设计了一个凸松弛优化问题来恢复矩阵。这种重建需要许多与问题的原始大小成比例的测量(没有排序)。我们提供了仿真来显示所提出的方案的重建性能,以及当均匀噪声存在时该估计的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frame retransmission using a modified VST-TDMA access protocol in Picocell/WPAN Expected time to rendezvous in multi-hop cognitive radio networks Throughput and delay evaluation framework integrating SDN and IEEE 802.11s WMN Correlation sketching for ordered data Class of service in fog computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1