Towards SLAM-Based Outdoor Localization using Poor GPS and 2.5D Building Models

Ruyu Liu, Jianhua Zhang, Shengyong Chen, Clemens Arth
{"title":"Towards SLAM-Based Outdoor Localization using Poor GPS and 2.5D Building Models","authors":"Ruyu Liu, Jianhua Zhang, Shengyong Chen, Clemens Arth","doi":"10.1109/ISMAR.2019.00016","DOIUrl":null,"url":null,"abstract":"In this paper, we address the topic of outdoor localization and tracking using monocular camera setups with poor GPS priors. We leverage 2.5D building maps, which are freely available from open-source databases such as OpenStreetMap. The main contributions of our work are a fast initialization method and a non-linear optimization scheme. The initialization upgrades a visual SLAM reconstruction with an absolute scale. The non-linear optimization uses the 2.5D building model footprint, which further improves the tracking accuracy and the scale estimation. A pose optimization step relates the vision-based camera pose estimation from SLAM to the position information received through GPS, in order to fix the common problem of drift. We evaluate our approach on a set of challenging scenarios. The experimental results show that our approach achieves improved accuracy and robustness with an advantage in run-time over previous setups.","PeriodicalId":348216,"journal":{"name":"2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"29 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we address the topic of outdoor localization and tracking using monocular camera setups with poor GPS priors. We leverage 2.5D building maps, which are freely available from open-source databases such as OpenStreetMap. The main contributions of our work are a fast initialization method and a non-linear optimization scheme. The initialization upgrades a visual SLAM reconstruction with an absolute scale. The non-linear optimization uses the 2.5D building model footprint, which further improves the tracking accuracy and the scale estimation. A pose optimization step relates the vision-based camera pose estimation from SLAM to the position information received through GPS, in order to fix the common problem of drift. We evaluate our approach on a set of challenging scenarios. The experimental results show that our approach achieves improved accuracy and robustness with an advantage in run-time over previous setups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用较差的GPS和2.5D建筑模型实现基于slam的户外定位
在本文中,我们讨论了使用具有较差GPS先验的单目相机设置进行户外定位和跟踪的主题。我们利用2.5D建筑地图,这些地图可以从OpenStreetMap等开源数据库免费获得。我们工作的主要贡献是一种快速初始化方法和非线性优化方案。初始化对可视化SLAM重建进行了绝对尺度的升级。非线性优化采用2.5D建筑模型足迹,进一步提高了跟踪精度和尺度估计。姿态优化步骤将基于视觉的SLAM相机姿态估计与GPS接收的位置信息联系起来,以解决常见的漂移问题。我们在一系列具有挑战性的场景中评估我们的方法。实验结果表明,我们的方法提高了精度和鲁棒性,并且在运行时比以前的设置具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards SLAM-Based Outdoor Localization using Poor GPS and 2.5D Building Models Studying Exocentric Distance Perception in Optical See-Through Augmented Reality A Comparison of Desktop and Augmented Reality Scenario Based Training Authoring Tools Measuring Cognitive Load and Insight: A Methodology Exemplified in a Virtual Reality Learning Context Augmented Environment Mapping for Appearance Editing of Glossy Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1