Hybrid Bisect K-Means Clustering Algorithm

K. Murugesan, Jun Zhang
{"title":"Hybrid Bisect K-Means Clustering Algorithm","authors":"K. Murugesan, Jun Zhang","doi":"10.1109/BCGIN.2011.62","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid clustering algorithm that combines divisive and agglomerative hierarchical clustering algorithm. Our method uses bisect K-means for divisive clustering algorithm and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) for agglomerative clustering algorithm. First, we cluster the document collection using bisect K-means clustering algorithm with the value K', which is greater than the total number of clusters, K. Second, we calculate the centroids of K' clusters obtained from the previous step. Then we apply the UPGMA agglomerative hierarchical algorithm on these centroids for the given value, K. After the UPGMA finds K clusters in these K' centroids, if two centroids ended up in the same cluster, then all of their documents will belong to the same cluster. We compared the goodness of clusters generated by bisect K-means and the proposed hybrid algorithms, measured on various cluster evaluation metrics. Our experimental results shows that the proposed method outperforms the standard bisect K-means algorithm.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"18 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we present a hybrid clustering algorithm that combines divisive and agglomerative hierarchical clustering algorithm. Our method uses bisect K-means for divisive clustering algorithm and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) for agglomerative clustering algorithm. First, we cluster the document collection using bisect K-means clustering algorithm with the value K', which is greater than the total number of clusters, K. Second, we calculate the centroids of K' clusters obtained from the previous step. Then we apply the UPGMA agglomerative hierarchical algorithm on these centroids for the given value, K. After the UPGMA finds K clusters in these K' centroids, if two centroids ended up in the same cluster, then all of their documents will belong to the same cluster. We compared the goodness of clusters generated by bisect K-means and the proposed hybrid algorithms, measured on various cluster evaluation metrics. Our experimental results shows that the proposed method outperforms the standard bisect K-means algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合对分k均值聚类算法
在本文中,我们提出了一种混合聚类算法,它结合了分裂和聚集的层次聚类算法。该方法采用二分K-means进行分裂聚类,采用UPGMA (Unweighted Pair Group method with Arithmetic Mean)进行聚类。首先,我们使用二分K-means聚类算法对文档集合进行聚类,聚类值K′大于聚类总数K,其次,我们计算从上一步得到的K′聚类的质心。然后我们对给定值K的这些质心应用UPGMA聚类层次算法。UPGMA在这K个质心中找到K个聚类后,如果两个质心最终在同一个聚类中,那么它们所有的文档都属于同一个聚类。我们比较了由二分K-means和提出的混合算法生成的聚类的优度,用各种聚类评价指标来衡量。实验结果表明,该方法优于标准的二分k均值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Bisect K-Means Clustering Algorithm A Labeling Algorithm for the Earliest and Latest Time-Varying Maximum Flow Problems The Research on Motive Force of Urban Development Based on Informationization The Eddy Currents Calculation Based on the Least Square Algorithm for EAST A Passive Locating Algorithm for Motive Target Based on Modified Particle Filter Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1