M. Maksutoglu, A. Ghirri, S. Yorulmaz, Fikret Yildiz, M. Affronte, B. Rameev
{"title":"Modelling Studies of Magnetostatic Modes in Hybrid MW-YIG Structures","authors":"M. Maksutoglu, A. Ghirri, S. Yorulmaz, Fikret Yildiz, M. Affronte, B. Rameev","doi":"10.1109/piers55526.2022.9792963","DOIUrl":null,"url":null,"abstract":"Studies on spin waves (magnons) formed by collective electron spin excitations in magnetic materials have recently gained importance due to their great potential for magnonics and hybrid quantum systems. In this study, the magnetostatic spin-wave modes excited as a result of the coupling between the 2D microwave resonator and the YIG sphere have been investigated computationally. The simulations have been performed using commercial finite element method software (CST Studio Suite). The 2D microwave resonator is realized on the ground plane of the broadband microstrip structure by using a low-loss printed circuit board. The calculations reveal the Q factor to be about 300 by optimizing the resonance frequency to 7 GHz. The most interesting result of simulations is the observation that the magneto-static spin-wave modes of the YIG sphere may be excited depending on the geometry of the hybrid structure. A strong interaction between the YIG and the microwave resonator observed in the dispersion curves of these modes reveals the realization of the strong coupling regime, which is a prerequisite of their use in quantum hybrid devices.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"59 Pt A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Studies on spin waves (magnons) formed by collective electron spin excitations in magnetic materials have recently gained importance due to their great potential for magnonics and hybrid quantum systems. In this study, the magnetostatic spin-wave modes excited as a result of the coupling between the 2D microwave resonator and the YIG sphere have been investigated computationally. The simulations have been performed using commercial finite element method software (CST Studio Suite). The 2D microwave resonator is realized on the ground plane of the broadband microstrip structure by using a low-loss printed circuit board. The calculations reveal the Q factor to be about 300 by optimizing the resonance frequency to 7 GHz. The most interesting result of simulations is the observation that the magneto-static spin-wave modes of the YIG sphere may be excited depending on the geometry of the hybrid structure. A strong interaction between the YIG and the microwave resonator observed in the dispersion curves of these modes reveals the realization of the strong coupling regime, which is a prerequisite of their use in quantum hybrid devices.
磁性材料中由集体电子自旋激发形成的自旋波(磁振子)的研究近年来因其在磁振学和混合量子系统中的巨大潜力而变得重要。本文对二维微波谐振腔与YIG球耦合所激发的静磁自旋波模式进行了计算研究。利用商业有限元软件(CST Studio Suite)进行了仿真。利用低损耗印刷电路板在宽带微带结构的地平面上实现了二维微波谐振器。计算结果表明,将谐振频率优化到7 GHz时,Q因子约为300。模拟中最有趣的结果是观察到YIG球的静磁自旋波模式可能会根据混合结构的几何形状而被激发。在这些模式的色散曲线中观察到YIG与微波谐振腔之间的强相互作用,揭示了强耦合状态的实现,这是它们在量子混合器件中使用的先决条件。