T. Ghani, K. Mistry, P. Packan, M. Armstrong, S. Thompson, S. Tyagi, M. Bohr
{"title":"Asymmetric source/drain extension transistor structure for high performance sub-50 nm gate length CMOS devices","authors":"T. Ghani, K. Mistry, P. Packan, M. Armstrong, S. Thompson, S. Tyagi, M. Bohr","doi":"10.1109/VLSIT.2001.934925","DOIUrl":null,"url":null,"abstract":"In this paper, we present for the first time an asymmetric source/drain extension (SDE) transistor structure which can achieve high I/sub DSAT/ at gate dimensions below 50 nm. We demonstrate that this structure alleviates the severe I/sub DSAT/ degradation reported in the literature for devices when gate to source/drain overlap dimensions are reduced to under 20 nm/side (Thomson et al, 1998). Sub-15 nm gate to source/drain overlap is mandatory for supporting gate dimensions below 50 nm (Ghani et al, 2000). Moreover, fabrication of this structure employs a standard process flow in which SDE regions are formed by ion implantation and a subsequent drive-in anneal. Fundamental principles of device operation of the asymmetric SDE transistor are presented followed by a description of the process flow and an in-depth analysis of electrical characteristics and associated trade-offs.","PeriodicalId":232773,"journal":{"name":"2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2001.934925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this paper, we present for the first time an asymmetric source/drain extension (SDE) transistor structure which can achieve high I/sub DSAT/ at gate dimensions below 50 nm. We demonstrate that this structure alleviates the severe I/sub DSAT/ degradation reported in the literature for devices when gate to source/drain overlap dimensions are reduced to under 20 nm/side (Thomson et al, 1998). Sub-15 nm gate to source/drain overlap is mandatory for supporting gate dimensions below 50 nm (Ghani et al, 2000). Moreover, fabrication of this structure employs a standard process flow in which SDE regions are formed by ion implantation and a subsequent drive-in anneal. Fundamental principles of device operation of the asymmetric SDE transistor are presented followed by a description of the process flow and an in-depth analysis of electrical characteristics and associated trade-offs.