A new dynamic clustering method based on nuclear field

Xiaoxu He, C. Shao, Y. Xiong
{"title":"A new dynamic clustering method based on nuclear field","authors":"Xiaoxu He, C. Shao, Y. Xiong","doi":"10.1109/ICNC.2014.6975911","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an important and challenging subject in time series data mining. It has a very important application prospect in many areas, such as medical images, atmosphere, finance, etc. Many current clustering techniques have still many problems, for example, k-means is a very effective method in finding different shapes and tolerating noise, but its result severely depends on the suitable choice of parameters. Inspired by nuclear field in physics, we propose a new dynamic clustering method based on nuclear force and interaction. Basically, each data point in data space is considered as a material particle with a spherically symmetric field around it and the interaction of all data points forms a nuclear field. Through the interaction of nuclear force, the initial clusters are iteratively merged and a hierarchy of clusters are generated. Experimental results show that compared with the typical clustering method k-means, the proposed approach enjoys favorite clustering quality and requires no careful parameters tuning.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"40 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster analysis is an important and challenging subject in time series data mining. It has a very important application prospect in many areas, such as medical images, atmosphere, finance, etc. Many current clustering techniques have still many problems, for example, k-means is a very effective method in finding different shapes and tolerating noise, but its result severely depends on the suitable choice of parameters. Inspired by nuclear field in physics, we propose a new dynamic clustering method based on nuclear force and interaction. Basically, each data point in data space is considered as a material particle with a spherically symmetric field around it and the interaction of all data points forms a nuclear field. Through the interaction of nuclear force, the initial clusters are iteratively merged and a hierarchy of clusters are generated. Experimental results show that compared with the typical clustering method k-means, the proposed approach enjoys favorite clustering quality and requires no careful parameters tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于核场的动态聚类方法
聚类分析是时间序列数据挖掘中一个重要而富有挑战性的课题。它在医学影像、大气、金融等领域有着非常重要的应用前景。目前许多聚类技术仍然存在许多问题,例如k-means在寻找不同形状和容忍噪声方面是一种非常有效的方法,但其结果严重依赖于参数的选择。受物理中核场的启发,提出了一种基于核力和相互作用的动态聚类方法。基本上,数据空间中的每个数据点都被认为是一个物质粒子,其周围有一个球对称场,所有数据点的相互作用形成一个核场。通过核力的相互作用,对初始簇进行迭代合并,生成簇的层次结构。实验结果表明,与典型的k-means聚类方法相比,该方法具有较好的聚类质量,无需仔细调整参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph based K-nearest neighbor minutiae clustering for fingerprint recognition Applications of artificial intelligence technologies in credit scoring: A survey of literature Construction of linear dynamic gene regulatory network based on feedforward neural network A new dynamic clustering method based on nuclear field A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1